A majority of the human genome is transcribed into noncoding RNAs, of which long noncoding RNAs (lncRNAs) form a large and heterogeneous fraction. While lncRNAs are mostly noncoding, recent evidence suggests that cryptic translation within some lncRNAs may produce proteins with important regulatory functions. In this issue of the JCI, Zheng, Wei, and colleagues used an integrative functional genomic strategy to systematically identify cryptic lncRNA-encoded ORFs that play a role in estrogen receptor-positive (ER+) breast cancer (BC). They identified 758 cryptic lncRNA-encoded ORFs undergoing active translation, of which 28 had potential functional and clinical relevance in ER+ BC. The LINC00992-encoded polypeptide GT3-INCP was upregulated in ER+ BC and drove tumor growth. GT3-INCP was regulated by estrogen and the ER and acted via the transcription factor GATA3 to regulate BC susceptibility and risk genes. These findings discern a largely unexplored class of molecules and have implications for many pathologies, including cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974087 | PMC |
http://dx.doi.org/10.1172/JCI167271 | DOI Listing |
Signal Transduct Target Ther
January 2025
MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
Emerging evidence demonstrates that cryptic translation from RNAs previously annotated as noncoding might generate microproteins with oncogenic functions. However, the importance and underlying mechanisms of these microproteins in alternative splicing-driven tumor progression have rarely been studied. Here, we show that the novel protein TPM3P9, encoded by the lncRNA tropomyosin 3 pseudogene 9, exhibits oncogenic activity in clear cell renal cell carcinoma (ccRCC) by enhancing oncogenic RNA splicing.
View Article and Find Full Text PDFJ Clin Invest
March 2023
University of Virginia NCI-Designated Comprehensive Cancer Center, Charlottesville, Virginia, USA.
A majority of the human genome is transcribed into noncoding RNAs, of which long noncoding RNAs (lncRNAs) form a large and heterogeneous fraction. While lncRNAs are mostly noncoding, recent evidence suggests that cryptic translation within some lncRNAs may produce proteins with important regulatory functions. In this issue of the JCI, Zheng, Wei, and colleagues used an integrative functional genomic strategy to systematically identify cryptic lncRNA-encoded ORFs that play a role in estrogen receptor-positive (ER+) breast cancer (BC).
View Article and Find Full Text PDFJ Clin Invest
March 2023
Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Emerging evidence suggests that cryptic translation within long noncoding RNAs (lncRNAs) may produce novel proteins with important developmental/physiological functions. However, the role of this cryptic translation in complex diseases (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!