Identification of novel human nicotinamide N-methyltransferase inhibitors: a structure-based pharmacophore modeling and molecular dynamics approach.

J Biomol Struct Dyn

Chemical Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India.

Published: December 2023

Human nicotinamide N-methyltransferase (hNNMT) is a cytosolic enzyme associated in the phase-II metabolism, belonging to the S-adenosyl-L-methionine (SAM)-dependent methyltransferases family. Overexpression of hNNMT was observed in diseases such as metabolic disorders and different types of cancers, which suggest NNMT as a prospective therapeutic target. In this study we propose a structure-based pharmacophore model to understand the structural features responsible for the pharmacological activity. The generated model was validated using the ROC curve (AUC), goodness of hit score (GH), specificity, sensitivity and enrichment factor (EF). The pharmacophore was employed to retrieve active molecules from the ZINC database, followed by virtual-screening and molecular docking. Six molecules with the best pharmfit score, binding energy and ADMET properties were identified in this study. A 150 ns molecular dynamics simulation was performed on the selected molecules complexed with hNNMT protein to validate the results. The molecules ZINC35464499, ZINC13311192, ZINC31159282, ZINC14650833, ZINC14819515 and ZINC00303881 were identified, which could be act as the potential hNNMT inhibitors and can also be used as direct hits for developing novel hNNMT antagonists.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2183714DOI Listing

Publication Analysis

Top Keywords

human nicotinamide
8
nicotinamide n-methyltransferase
8
structure-based pharmacophore
8
molecular dynamics
8
hnnmt
5
identification novel
4
novel human
4
n-methyltransferase inhibitors
4
inhibitors structure-based
4
pharmacophore modeling
4

Similar Publications

Pifithrin-μ sensitizes mTOR-activated liver cancer to sorafenib treatment.

Cell Death Dis

January 2025

Department of Organ Transplantation and Hepatobiliary Surgery, Key Laboratory of Organ Transplantation of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.

TSC2, a suppressor of mTOR, is inactivated in up to 20% of HBV-associated liver cancer. This subtype of liver cancer is associated with aggressive behavior and early recurrence after hepatectomy. Being the first targeted regimen for advanced liver cancer, sorafenib has limited efficacy in HBV-positive patients.

View Article and Find Full Text PDF

Objective: Metabolic reprogramming plays a critical role in modulating the innate and adaptive immune response, but its role in cutaneous autoimmune diseases, such as cutaneous lupus erythematosus (CLE), is less well studied. An improved understanding of the metabolic pathways dysregulated in CLE may lead to novel treatment options, biomarkers and insights into disease pathogenesis. The objective was to compare metabolomic profiles in the skin and sera of CLE and control patients using liquid chromatography-mass spectrometry (LC-MS).

View Article and Find Full Text PDF

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

The Pentose Phosphate Pathway: From Mechanisms to Implications for Gastrointestinal Cancers.

Int J Mol Sci

January 2025

Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.

The pentose phosphate pathway (PPP), traditionally recognized for its role in generating nicotinamide adenine dinucleotide phosphate (NADPH) and ribose-5-phosphate (R5P), has emerged as a critical metabolic hub with involvements in various gastrointestinal (GI) cancers. The PPP plays crucial roles in the initiation, development, and tumor microenvironment (TME) of GI cancers by modulating redox homeostasis and providing precursors for nucleotide biosynthesis. Targeting PPP enzymes and their regulatory axis has been a potential strategy in anti-GI cancer therapies.

View Article and Find Full Text PDF

Background: The mammalian NAD-dependent deacetylase sirtuin-1 family (named also silent information regulator or SIRT family, where NAD stands for "nicotinamide adenine dinucleotide" (NAD)) appears to have a dual role in several human cancers by modulating cell proliferation and death. This study examines how SIRT1 protein levels correlate with clinicopathological characteristics and survival outcomes in patients with breast cancer.

Methods: A total of 407 BC formalin-fixed paraffin-embedded (FFPE) samples were collected from King Abdulaziz University Hospital, Saudi Arabia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!