Immunotherapies: How Do They Work?

Praxis (Bern 1994)

Service d'oncologie, Hôpitaux universitaires de Genève, Geneva, Switzerland.

Published: March 2023

The understanding of the immune system and the discovery of the proteins and processes involved in its regulation have enabled the emergence of new approaches against cancer. The development of antibodies (immune checkpoint inhibitors) able of blocking interactions that suppress the activation of T cells or their effector actions against cancer cells has modified the prognosis of several cancer forms. Bispecific antibodies as well as cellular immunotherapies (CARs/TILs) are new immunotherapy approaches that have already shown their effectiveness in certain onco-haematological diseases. Unfortunately, only a fraction of treated patients derives benefit from these treatments. The future challenge will be to understand the resistance mechanisms to immunotherapies so that treatment may be personalized for each patient.

Download full-text PDF

Source
http://dx.doi.org/10.1024/1661-8157/a003971DOI Listing

Publication Analysis

Top Keywords

immunotherapies work?
4
work? understanding
4
understanding immune
4
immune system
4
system discovery
4
discovery proteins
4
proteins processes
4
processes involved
4
involved regulation
4
regulation enabled
4

Similar Publications

Hypoxic tumors present a significant challenge in cancer therapy due to their ability to adaptation in low-oxygen environments, which supports tumor survival and resistance to treatment. Enhanced mitophagy, the selective degradation of mitochondria by autophagy, is a crucial mechanism that helps sustain cellular homeostasis in hypoxic tumors. In this study, we develop an azocalix[4]arene-modified supramolecular albumin nanoparticle, that co-delivers hydroxychloroquine and a mitochondria-targeting photosensitizer, designed to induce cascaded oxidative stress by regulating mitophagy for the treatment of hypoxic tumors.

View Article and Find Full Text PDF

Targeting lipid metabolism in regulatory T cells for enhancing cancer immunotherapy.

Biochim Biophys Acta Rev Cancer

January 2025

Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646000, China; Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China. Electronic address:

As immunosuppressive cells, Regulatory T cells (Tregs) exert their influence on tumor immune escape within the tumor microenvironment (TME) by effectively suppressing the activity of other immune cells, thereby significantly impeding the anti-tumor immune response. In recent years, the metabolic characteristics of Tregs have become a focus of research, especially the important role of lipid metabolism in maintaining the function of Tregs. Consequently, targeted interventions aimed at modulating lipid metabolism in Tregs have been recognized as an innovative and promising approach to enhance the effectiveness of tumor immunotherapy.

View Article and Find Full Text PDF

Clinical advances of mRNA vaccines for cancer immunotherapy.

Med

January 2025

Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

The development of mRNA vaccines represents a significant advancement in cancer treatment, with more than 120 clinical trials to date demonstrating their potential across various malignancies, including lung, breast, prostate, melanoma, and more challenging cancers such as pancreatic and brain tumors. These vaccines work by encoding tumor-specific antigens and immune-stimulating molecules, effectively activating the immune system to target and eliminate cancer cells. Despite these promising advancements, significant challenges remain, particularly in achieving efficient delivery and precise regulation of the immune response.

View Article and Find Full Text PDF

Tertiary lymphoid structures and cancer immunotherapy: From bench to bedside.

Med

January 2025

Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France. Electronic address:

Tertiary lymphoid structures (TLSs) are organized ectopic lymphoid aggregates within the tumor microenvironment that serve as crucial sites for the development of adaptive antitumor cellular and humoral immunity. TLSs have been consistently documented in numerous cancer types, correlating with improved prognosis and enhanced responses to immunotherapy, especially immune-checkpoint blockade (ICB). Given the potential role of TLSs as predictive biomarkers for the efficacy of ICB in cancer patients, the therapeutic manipulation of TLSs is gaining significant attention as a promising avenue for cancer treatment.

View Article and Find Full Text PDF

Tumor immunotherapy, particularly immune checkpoint inhibitors (ICIs), has emerged as a powerful strategy in treating malignant tumors, exhibiting efficacy in both first-line and second-line treatments for advanced non-small cell lung cancer (NSCLC). Despite their success, ICIs can lead to adverse reactions, including interstitial lung disease (ILD), with an incidence ranging from 2.7 % to 20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!