Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Autism spectrum disorders (ASD) are associated with the contribution of many prenatal risk factors; in particular, the sex hormone progestin and vitamin D receptor (VDR) are associated with gastrointestinal (GI) symptoms in ASD development, although the related mechanism remains unclear. We investigated the possible role and mechanism of progestin 17-hydroxyprogesterone caproate (17-OHPC) exposure-induced GI dysfunction and autism-like behaviours (ALB) in mouse offspring. An intestine-specific VDR-deficient mouse model was established for prenatal treatment, while transplantation of haematopoietic stem cells (HSCT) with related gene manipulation was used for postnatal treatment for 17-OHPC exposure-induced GI dysfunction and ALB in mouse offspring. The in vivo mouse experiments found that VDR deficiency mimics prenatal 17-OHPC exposure-mediated GI dysfunction, but has no effect on 17-OHPC-mediated autism-like behaviours (ALB) in mouse offspring. Furthermore, prenatal 17-OHPC exposure induces CLDN1 suppression in intestine epithelial cells, and transplantation of HSCT with CLDN1 expression ameliorates prenatal 17-OHPC exposure-mediated GI dysfunction, but has no effect on 17-OHPC-mediated ALB in offspring. In conclusion, prenatal 17-OHPC exposure triggers GI dysfunction in autism-like mouse offspring via CLDN1 suppression, providing a possible explanation for the involvement of CLDN1 and VDR in prenatal 17-OHPC exposure-mediated GI dysfunction with ASD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.16761 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!