Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, pentlandite materials have been shown to exhibit promising properties with respect to the hydrogen evolution reaction (HER). A whole series of trimetallic FeCoNi-pentlandite materials and composites have been synthesized from the elements using high-temperature synthesis and categorized in terms of purity. Furthermore, the electrocatalytic properties regarding the HER were determined and correlated to hydrogen adsorption energies, which were determined by means of density functional theory (DFT) calculations. The relationships between activity and its origin generated in this way help to better understand the pentlandite system and provide meaningful approaches for catalyst synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928393 | PMC |
http://dx.doi.org/10.1021/acsmaterialsau.2c00016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!