(NH)AgX (X = Br, I): 1D Silver Halides with Broadband White Light Emission and Improved Stability.

ACS Mater Au

Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.

Published: September 2021

Recently, ternary copper(I) halides have emerged as alternatives to lead halide perovskites for light emission applications. Despite their high-efficiency photoluminescence (PL) properties, most copper(I) halides are blue emitters with unusually poor tunability of their PL properties. Here, we report the impact of substitution of copper with silver in the high-efficiency blue-emitting Cu(I) halides through hydrothermal synthesis and characterization of (NH)AgX (X = Br, I). (NH)AgX are found to exhibit contrasting light emission properties compared to the blue-emitting Cu(I) analogues. Thus, (NH)AgBr and (NH)AgI exhibit broadband whitish light emission at room temperature with PL maxima at 394 and 534 nm and full width at half-maximum values of 142 and 114 nm, respectively. Based on our combined experimental and computational results, the broadband emission in (NH)AgX is attributed to the presence of high-stability self-trapped excitons and defect-bound excitons. (NH)AgBr and (NH)AgI both have significantly improved air and moisture stability as compared to the related copper(I) halides, which are prone to degradation via oxidation. Our results suggest that silver halides should be considered alongside their copper analogues for high-efficiency light emission applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9888650PMC
http://dx.doi.org/10.1021/acsmaterialsau.1c00009DOI Listing

Publication Analysis

Top Keywords

light emission
20
copperi halides
12
silver halides
8
emission applications
8
blue-emitting cui
8
nhagbr nhagi
8
halides
6
emission
6
light
5
nhagx
4

Similar Publications

High-Q Emission from Colloidal Quantum Dots Embedded in Polymer Quasi-BIC Metasurfaces.

Nano Lett

January 2025

Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Metasurfaces supporting narrowband resonances are of significant interest in photonics for molecular sensing, quantum light source engineering, and nonlinear photonics. However, many device architectures rely on large refractive index dielectric materials and lengthy fabrication processes. In this work, we demonstrate quasi-bound states in the continuum (quasi-BICs) using a polymer metasurface exhibiting experimental quality factors of 305 at visible wavelengths.

View Article and Find Full Text PDF

Exciton emitters in two-dimensional monolayer transition-metal dichalcogenides (TMDs) provide a boulevard for the emerging optoelectronic field, ranging from miniaturized light-emitting diodes to quantum emitters and optical communications. However, the low quantum efficiency from limited light-matter interactions and harmful substrate effects seriously hinders their applications. In this work, we achieve a ∼438-fold exciton photoluminescence enhancement by constructing a Fabry-Pérot cavity consisting of monolayer WS and a micron-scale hole on the SiO/Si substrate.

View Article and Find Full Text PDF

In vitro and animal studies have suggested that inoculation with herpes simplex virus 1 (HSV-1) can lead to amyloid deposits, hyperphosphorylation of tau, and/or neuronal loss. Here, we studied the association between HSV-1 and Alzheimer's disease biomarkers in humans. Our sample included 182 participants at risk of cognitive decline from the Multidomain Alzheimer Preventive Trial who had HSV-1 plasma serology and an amyloid PET scan.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.

View Article and Find Full Text PDF

Aggregation control of anionic pentamethine cyanine enabling excitation wavelength selective NIR-II fluorescence imaging-guided photodynamic therapy.

Nat Commun

January 2025

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.

Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!