Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding fracture mechanics of ultrathin polymeric films is crucial for modern technologies, including semiconductor and coating industries. However, up to now, the fracture behavior of sub-100 nm polymeric thin films is rarely explored due to challenges in handling samples and limited testing methods available. In this work, we report a new testing methodology that can not only visualize the evolution of the local stress distribution through wrinkling patterns and crack propagation during the deformation of ultrathin films but also directly measure their fracture energies. Using ultrathin polystyrene films as a model system, we both experimentally and computationally investigate the effect of the film thickness and molecular weight on their fracture behavior, both of which show a ductile-to-brittle transition. Furthermore, we demonstrate the broad applicability of this testing method in semicrystalline semiconducting polymers. We anticipate our methodology described here could provide new ways of studying the fracture behavior of ultrathin films under confinement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954313 | PMC |
http://dx.doi.org/10.1021/acspolymersau.1c00005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!