We report self-reporting fluorescent polysaccharide polymersome nanoassemblies for enzyme-responsive intracellular delivery of two clinical anticancer drugs doxorubicin (DOX) and cisplatin to study the real-time drug-releasing aspects by fluorescent resonance energy transfer (FRET) bioimaging in live cancer cells. Fluorescent polymersomes were tailor-made by tagging an aggregation-induced emission (AIE) optical chromophore, tetraphenylethylene (TPE), and a plant-based vesicular directing hydrophobic unit through enzyme-biodegradable aliphatic ester chemical linkages in the polysaccharide dextran. The blue-luminescent polymersome self-assembled in water and exhibited excellent encapsulation capability for the red-luminescent anticancer drug DOX. FRET between the AIE polymersome host and DOX guest molecules resulted in a completely turn-off probe. At the intracellular level, the lysosomal enzymatic disassembly of the polymersome restored the dual fluorescent signals from DOX and TPE at the nucleus and the lysosomes, respectively. Live-cell confocal microscopy coupled with selective photoexcitation was employed to study the real-time polymersome disassembly by monitoring the turn-on fluorescent signals in human breast cancer cell lines. Alternatively, carboxylic acid-functionalized AIE polymersomes were also tailor-made for cisplatin stitching to directly monitor Pt drug delivery. The polymersome nanoassemblies exhibited excellent structural tolerance for the chemical conjugation of the Pt drugs, and the fluorescence signals were unaltered. An in vitro drug release study confirmed that the cisplatin-stitched fluorescent polymersomes were very stable under physiological conditions and underwent lysosomal enzymatic degradation to inhibit the cancer cell growth. A lysosomal colocalization experiment using confocal microscopy substantiates the enzyme-responsive degradation of these polymersomes to release both the encapsulated and conjugated drugs at the intracellular level. The present design provides a unique opportunity to deliver more than one anticancer drug from a single polymersome platform in cancer research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954308 | PMC |
http://dx.doi.org/10.1021/acspolymersau.1c00042 | DOI Listing |
Adv Healthc Mater
December 2024
Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China.
Periodontitis is the leading cause of tooth loss in adults. Initially triggered by bacterial infection, it is characterized by subsequent dysregulation of mitochondrial homeostasis, leading to ongoing loss of periodontal tissue. Mitophagic flux, a critical physiological mechanism for maintaining mitochondrial homeostasis, is compromised in periodontitis.
View Article and Find Full Text PDFAdv Biol (Weinh)
December 2024
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgo, G1 1XL, UK.
This study investigates the formation and properties of vesicles produced via biocatalytic Polymerization-Induced Self-Assembly (bioPISA) as artificial cells. Methods for achieving size uniformity, including gentle centrifugation and sucrose gradient centrifugation, are explored, and the effects of stirring speed on vesicle morphology is investigated. The internal structure of the vesicles, characterized by a polymer-rich matrix, is analyzed using fluorescence correlation spectroscopy (FCS).
View Article and Find Full Text PDFACS Nano
December 2024
Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
With the booming antimicrobial drug resistance worldwide, traditional antibacterial agents (e.g., antibiotics) are usually powerless against superbug.
View Article and Find Full Text PDFBiomacromolecules
December 2024
Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
Bioresponsive polymeric nanoparticles (NPs) that are capable of delivering and releasing therapeutics and biotherapeutics to target sites have attracted vivid interest in cancer therapy and immunotherapy. In contrast to enthusiastic evolution in the academic world, the clinical translation of these smart systems is scarce, partly due to concerns about safety, stability, complexity, and scalability. The moderate targetability, responsivity, and benefits are other concerns.
View Article and Find Full Text PDFEur J Pharm Biopharm
January 2025
School of Life Science, Jiangxi Science and Technology Normal University, Jiangxi Key Laboratory of Natural Microbial Medicine Research, Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Nanchang 330013, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!