.

ACS Mater Au

Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States.

Published: May 2022

Microcomputed tomography is an important technique for distinguishing the vascular network from tissues with similar X-ray attenuation. Here, we describe a composite of barium sulfate (BaSO) nanoparticles, calcium carbonate (CaCO) nanoparticles, and alginate that provides improved performance over microscale BaSO particles, which are currently used clinically as X-ray contrast agents. BaSO and CaCO nanoparticles were synthesized using a polyol method with tetraethylene glycol as solvent and capping agent. The nanoparticles show good colloidal stability in aqueous solutions. A deliverable nanocomposite gel contrast agent was produced by encapsulation of the BaSO and CaCO nanoparticles in an alginate gel matrix. The gelation time was controlled by addition of d-(+)-gluconic acid δ-lactone, which controls the rate of dissolution of the CaCO nanoparticles that produce Ca which cross-links the gel. Rapid cross-linking of the gel by Ba was minimized by producing BaSO nanoparticles with an excess of surface sulfate. The resulting BaSO-CaCO nanoparticle alginate gel mechanical properties were characterized, including the gel storage modulus, peak stress and elastic modulus, and radiodensity. The resulting nanocomposite has good viscosity control and good final gel stiffness. The nanocomposite has gelation times between 30 and 35 min, adequate for full body perfusion. This is the first nanoscale composite of a radiopaque metal salt to be developed in combination with an alginate hydrogel and designed for medical perfusion and vascular imaging applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9888639PMC
http://dx.doi.org/10.1021/acsmaterialsau.1c00070DOI Listing

Publication Analysis

Top Keywords

caco nanoparticles
16
baso nanoparticles
8
nanoparticles alginate
8
baso caco
8
alginate gel
8
nanoparticles
7
gel
7
baso
5
microcomputed tomography
4
tomography technique
4

Similar Publications

Vitamin B, or riboflavin, is essential for maintaining healthy cellular metabolism and function. However, its light sensitivity, poor water solubility, and gastrointestinal barriers limit its storage, delivery, and absorption. Selecting suitable nanomaterials for encapsulating vitamin B is crucial to overcoming these challenges.

View Article and Find Full Text PDF

Propionate-functionalized chitosan hydrogel nanoparticles for effective oral delivery of insulin.

Int J Biol Macromol

December 2024

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China. Electronic address:

Oral delivery of macromolecular drugs is often hampered by the harsh gastrointestinal environment, which makes the drugs have poor bioavailability. Insulin, the most used drug for diabetes, also faces the same challenge for oral administration. Hence, we decorated microbial metabolite propionate on chitosan (CS) to fabricate insulin-loaded propionate-modified CS hydrogel nanoparticles (IN-CS/PA HNPs).

View Article and Find Full Text PDF

3D-Printed Dual-Channel Flow-Through Miniaturized Devices with Dual In-Channel Electrochemical Detection.

Anal Chem

December 2024

Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, E-28802 Madrid, Spain.

Here, we present three-dimensional-printed dual-channel flow-through miniaturized devices (3D) with dual electrochemical detection (ED) integrating two working electrodes each in an in-channel configuration (3D-ED). Prussian Blue (PB) shell-gold nanoparticles ((PB)AuNP) core-based electrochemistry was chosen for selective hydrogen peroxide determination. 3D-ED devices exhibited impress stability, identical intrachannel and interchannel electrochemical performances, and excellent interdevice precision with values under 9%, revealing the reliability of the design and fabrication of the devices.

View Article and Find Full Text PDF

[Absorption mechanism of iron oxide nanoparticles in Caco-2 cell model].

Wei Sheng Yan Jiu

November 2024

West China School of Public Health, Sichuan University, Chengdu 610041, China.

Objective: To explore the possible mechanism of absorption of iron oxide nanoparticles into the human body through the gastrointestinal tract.

Methods: This article used Caco-2 monolayer cells as a cell model, prepared characterized iron oxide nanoparticles(Fe_2O_3 NPs) as suspensions, and intervened in Caco-2 cells. CCK-8 method, transwell method, and atomic spectrophotometer method were used to explore the effect of Fe_2O_3 NPs on the activity of Caco-2 cells and the absorption and transport of them through the Caco-2 monolayer cell model.

View Article and Find Full Text PDF

Oral protein drugs' delivery faces challenges due to multiple absorption barriers for macromolecules. Co-administration with permeation enhancers and encapsulation in nano-carriers are two promising strategies to enhance their oral absorption. Herein, the poly(lactic--glycolic acid) nanoparticles (PLGA NPs) are decorated with polyethylene glycol (PEG) and a traditional Chinese medicine-derived permeation enhancer borneol (BO) for oral insulin delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!