Ultrasensitive Boron-Nitrogen-Codoped CVD Graphene-Derived NO Gas Sensor.

ACS Mater Au

CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India.

Published: May 2022

Recent trends in 2D materials like graphene are focused on heteroatom doping in a hexagonal honeycomb lattice to tailor the desired properties for various lightweight atomic thin-layer derived portable devices, particularly in the field of gas sensors. To design such gas sensors, it is important to either discover new materials with enhanced properties or tailor the properties of existing materials via doping. Herein, we exploit the concept of codoping of heteroatoms in graphene for more improvements in gas sensing properties and demonstrate a boron- and nitrogen-codoped bilayer graphene-derived gas sensor for enhanced nitrogen dioxide (NO) gas sensing applications, which may possibly be another alternative for an efficient sensing device. A well-known method of low-pressure chemical vapor deposition (LPCVD) is employed for synthesizing the boron- and nitrogen-codoped bilayer graphene (BNGr). To validate the successful synthesis of BNGr, the Raman, XPS, and FESEM characterization techniques were performed. The Raman spectroscopy results validate the synthesis of graphene nanosheets, and moreover, the FESEM and XPS characterization confirms the codoping of nitrogen and boron in the graphene matrix. The gas sensing device was fabricated on a Si/SiO substrate with prepatterned gold electrodes. The proposed BNGr sensor unveils an ultrasensitive nature for NO at room temperature. A plausible NO gas sensing mechanism is explored via a comparative study of the experimental results through the density functional theory (DFT) calculations of the adsorbed gas molecules on doped heteroatom sites. Henceforth, the obtained results of NO sensing with the BNGr gas sensor offer new prospects for designing next-generation lightweight and ultrasensitive gas sensing devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9888635PMC
http://dx.doi.org/10.1021/acsmaterialsau.2c00003DOI Listing

Publication Analysis

Top Keywords

gas sensing
20
gas sensor
12
gas
11
graphene-derived gas
8
gas sensors
8
boron- nitrogen-codoped
8
nitrogen-codoped bilayer
8
sensing device
8
sensing
7
graphene
5

Similar Publications

We have conducted a systematic study employing density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) to explore the gas sensing capabilities of nitrogen-doped single vacancy graphene quantum dots (SV/3N) decorated with transition metals (TM = Mn, Co, Cu). We have studied the interactions between TM@SV/3N and four different target gases (AsH, NH, PH, and HS) through the computation of adsorption energies, charge transfer, noncovalent interaction, density of states, band gap, and work function for 12 distinct adsorption systems. Our comprehensive analysis included an in-depth assessment of sensors' stability, sensitivity, selectivity, and reusability for practical applications.

View Article and Find Full Text PDF

The Role of Biosilica and Its Potential for Sensing Technologies: A Review.

J Biotechnol

December 2024

Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil; Process Engineering Graduate Program (PEP), Tiradentes University, Aracaju, Sergipe, Brazil.

Efficiently managing agricultural waste while innovating to derive value-added products is a significant challenge in the 21 century. In recent decades, these by-products have been increasingly explored as alternative sources for materials such as biosilica. Biosilica is renowned for its high surface area, biocompatibility, chemical stability, and modifiable surface, which makes it suitable for various applications.

View Article and Find Full Text PDF

Oxygenated VOC Detection Using SnO Nanoparticles with Uniformly Dispersed BiO.

Nanomaterials (Basel)

December 2024

Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga 816-8580, Fukuoka, Japan.

BiO particles are introduced as foreign additives onto SnO nanoparticles (NPs) surfaces for the efficient detection of oxygenated volatile organic compounds (VOCs). BiO-loaded SnO materials are prepared via the impregnation method followed by calcination treatment. The abundant BiO/SnO interfaces are constructed by the uniform dispersion of BiO particles on the SnO surface.

View Article and Find Full Text PDF

Today, air pollution is a global environmental problem. A huge amount of explosive and combustible gas emissions that negatively affect nature and human health. Gas sensors are one of the ways to prevent this impact.

View Article and Find Full Text PDF

Role of en-APTAS Membranes in Enhancing the NO Gas-Sensing Characteristics of Carbon Nanotube/ZnO-Based Memristor Gas Sensors.

Biosensors (Basel)

December 2024

Department of Semiconductor Systems Engineering, Convergence Engineering for Intelligent Drone, Institute of Semiconductor and System IC, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.

NO is a toxic gas that can damage the lungs with prolonged exposure and contribute to health conditions, such as asthma in children. Detecting NO is therefore crucial for maintaining a healthy environment. Carbon nanotubes (CNTs) are promising materials for NO gas sensors due to their excellent electronic properties and high adsorption energy for NO molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!