Photocatalysis driven by solar energy is a feasible strategy to alleviate energy crises and environmental problems. In recent years, significant progress has been made in developing advanced photocatalysts for efficient solar-to-chemical energy conversion. Single-atom catalysts have the advantages of highly dispersed active sites, maximum atomic utilization, unique coordination environment, and electronic structure, which have become a research hotspot in heterogeneous photocatalysis. This paper introduces the potential supports, preparation, and characterization methods of single-atom photocatalysts in detail. Subsequently, the fascinating effects of single-atom photocatalysts on three critical steps of photocatalysis (the absorption of incident light to produce electron-hole pairs, carrier separation and migration, and interface reactions) are analyzed. At the same time, the applications of single-atom photocatalysts in energy conversion and environmental protection (CO reduction, water splitting, N fixation, organic macromolecule reforming, air pollutant removal, and water pollutant degradation) are systematically summarized. Finally, the opportunities and challenges of single-atom catalysts in heterogeneous photocatalysis are discussed. It is hoped that this work can provide insights into the design, synthesis, and application of single-atom photocatalysts and promote the development of high-performance photocatalytic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202300460DOI Listing

Publication Analysis

Top Keywords

single-atom photocatalysts
20
energy conversion
12
conversion environmental
8
environmental protection
8
single-atom catalysts
8
heterogeneous photocatalysis
8
photocatalysts
6
single-atom
6
energy
5
progress single-atom
4

Similar Publications

Enzymes, composed of earth-abundant elements, outperform conventional heterogeneous photocatalysts in hydrogen production due to the dual-site cooperation between adjacent active metal sites and proton-transferring ligands. However, the realization of such dual-site cooperation in heterogeneous catalytic systems is hindered by the challenges in the precise construction of cooperative active sites. In this study, we present the design of a structurally tuned metal-organic framework (MOF) photocatalyst that incorporates cooperative Brønsted acid-single atom catalytic sites.

View Article and Find Full Text PDF

The development of efficient artificial photosynthesis systems is crucial for sustainable chemical production, as they mimic natural processes to convert solar energy into chemical products, thereby addressing both energy and environmental challenges. The main bottlenecks in current research include fabricating highly selective, stable, and scalable catalysts, as well as effectively harnessing the full spectrum of light, particularly the low-energy, long-wavelength portion. Herein, we report a novel composite photocatalyst system based on lead halide perovskites embedded in functionalized MOF glass.

View Article and Find Full Text PDF

1D Covalent Organic Frameworks with Tunable Dual-Cobalt Synergistic Sites for Efficient CO Photoreduction.

Macromol Rapid Commun

December 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.

Diatomic catalysts enhance photocatalytic CO reduction through synergistic effects. However, precisely regulating the distance between two catalytic centers to achieve synergistic catalysis poses significant challenges. In this study, a series of one-dimensional (1D) covalent organic frameworks (COFs) are designed with adjustable micropores to facilitate efficient CO photoreduction.

View Article and Find Full Text PDF

Single-Atom Mo Supported by TiO for Photocatalytic Nitrogen Fixation.

Langmuir

December 2024

State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.

The challenge of achieving efficient photocatalysts for the fixation of ambient nitrogen to ammonia persists. The utilization efficiency of single-metal-atom catalysts leads to an increased number of active sites, while their distinctive geometrical and electronic characteristics contribute to enhancing the intrinsic activity of each individual site. In this study, we present a method using an organic molecule to assist in loading TiO with Mo single atoms for the purpose of photocatalytic nitrogen fixation.

View Article and Find Full Text PDF

Cu-ZnS Modulated Multi-Carbon Coupling Enables High Selectivity Photoreduction CO to CHCHCOOH.

Adv Mater

December 2024

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China.

The direct photocatalytic conversion of CO and HO into high-value C chemicals holds great promise but remains challenging due to the intrinsic difficulty of C-C and C-C coupling processes and the lack of clarity regarding the underlying reaction mechanisms. Here, the design and synthesis of a Cu-ZnS photocatalyst featuring dispersed Cu single atoms are reported. These Cu single atoms are coordinated with S atoms, forming unique Cu-S-Zn active units with tunable charge distributions that interact favorably with surface-adsorbed intermediates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!