Background: Hydraulically fractured shales offer a window into the deep biosphere, where hydraulic fracturing creates new microbial ecosystems kilometers beneath the surface of the Earth. Studying the microbial communities from flowback fluids that are assumed to inhabit these environments provides insights into their ecophysiology, and in particular their ability to survive in these extreme environments as well as their influence on site operation e.g. via problematic biofouling processes and/or biocorrosion. Over the past decade, research on fractured shale microbiology has focused on wells in North America, with a few additional reported studies conducted in China. To extend the knowledge in this area, we characterized the geochemistry and microbial ecology of two exploratory shale gas wells in the Bowland Shale, UK. We then employed a meta-analysis approach to compare geochemical and 16S rRNA gene sequencing data from our study site with previously published research from geographically distinct formations spanning China, Canada and the USA.
Results: Our findings revealed that fluids recovered from exploratory wells in the Bowland are characterized by moderate salinity and high microbial diversity. The microbial community was dominated by lineages known to degrade hydrocarbons, including members of Shewanellaceae, Marinobacteraceae, Halomonadaceae and Pseudomonadaceae. Moreover, UK fractured shale communities lacked the usually dominant Halanaerobium lineages. From our meta-analysis, we infer that chloride concentrations play a dominant role in controlling microbial community composition. Spatio-temporal trends were also apparent, with different shale formations giving rise to communities of distinct diversity and composition.
Conclusions: These findings highlight an unexpected level of compositional heterogeneity across fractured shale formations, which is not only relevant to inform management practices but also provides insight into the ability of diverse microbial consortia to tolerate the extreme conditions characteristic of the engineered deep subsurface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972762 | PMC |
http://dx.doi.org/10.1186/s40793-023-00465-1 | DOI Listing |
Heliyon
January 2025
Shale Gas Research Institute of PetroChina Southwest Oil & Gas Field Company, Chengdu, Sichuan, 610051, China.
The mechanical properties of multi-lithologic reservoir rock masses are complex, and the failure mechanism is not clear. This research belongs to the field of oil and gas exploration and development. Brazilian splitting, and digital image correlation (DIC) tests were performed to study the mechanical properties and failure mechanism of assemblages containing sandstone, shale, and limestone.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province 610031, China.
Chemical weathering of lithologies with high geochemical backgrounds such as black shale has been proposed to be a critical source for toxic elements in soil and water systems. However, mechanisms controlling the release, migration and enrichment of toxic elements during black shale weathering are poorly understood. This study utilized a suite of micro analytical techniques such as TESCAN integrated mineral analyzer (TIMA), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and electron micro-probe analysis (EMPA) to elucidate the intimate relationship between mineralogical transformations and elemental behaviors from profile scale to mineral scale.
View Article and Find Full Text PDFSci Rep
January 2025
College of Petroleum Engineering, Liaoning Petrochemical University, Fushun, China.
The laminae of varying lithologies are characteristic of shale oil reservoirs, with their pronounced heterogeneity and fluid-solid coupling significantly impacting oil productivity. To this end, this study initially quantified the permeability and mechanical heterogeneity in lamina-developed shale through permeability tests and quasi triaxial mechanical experiments on shale cores from different orientations in the Jiyang Depression. These tests revealed marked brittleness in horizontally oriented cores and elasticity in vertically oriented cores.
View Article and Find Full Text PDFSci Rep
January 2025
School of New Energy, Longdong University, Qingyang, 745000, China.
In this work, taking wells LD1, LD2, and LY2 in the Laifeng-Xianfeng area as the research target, through core description, intensive core sampling, experimental analysis, imaging logging and other methods, the characteristics of graptolite zone development, organic carbon content, mineral composition, shale reservoir properties and the gas-bearing properties of the Wufeng-Longmaxi Formation shale are systematically analyzed. The main factors affecting the gas-bearing capacity of the Wufeng-Longmaxi Formation shale are extensively evaluated. The results reveal the following: ① The Wufeng-Longmaxi Formation shale, which was deposited in a deep-water shelf environment, has a large thickness (50-60 m) and a stable distribution.
View Article and Find Full Text PDFSci Rep
December 2024
Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray Park Campus Ballarat Road, Footscray, Melbourne, 8001, Australia.
Since the discovery of the turbulence drag reduction phenomenon over 70 years ago, it has been recognized that the addition of small quantities of drag-reducing agents to fluids can significantly decrease wall shear stress, thereby enhancing fluid pumpability. In many applications, the fluids often contain salts, such as those used in fracturing processes within the petroleum sector. The aim of this study is to experimentally investigate the effects of salinity, flow rate, and polymer concentration on the drag reduction performance of sodium alginate in circular pipes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!