Background: Inherited retinal degeneration is a leading cause of incurable vision loss in the developed world. While autologous iPSC mediated photoreceptor cell replacement is theoretically possible, the lack of commercially available technologies designed to enable high throughput parallel production of patient specific therapeutics has hindered clinical translation.

Methods: In this study, we describe the use of the Cell X precision robotic cell culture platform to enable parallel production of clinical grade patient specific iPSCs. The Cell X is housed within an ISO Class 5 cGMP compliant closed aseptic isolator (Biospherix XVivo X2), where all procedures from fibroblast culture to iPSC generation, clonal expansion and retinal differentiation were performed.

Results: Patient iPSCs generated using the Cell X platform were determined to be pluripotent via score card analysis and genetically stable via karyotyping. As determined via immunostaining and confocal microscopy, iPSCs generated using the Cell X platform gave rise to retinal organoids that were indistinguishable from organoids derived from manually generated iPSCs. In addition, at 120 days post-differentiation, single-cell RNA sequencing analysis revealed that cells generated using the Cell X platform were comparable to those generated under manual conditions in a separate laboratory.

Conclusion: We have successfully developed a robotic iPSC generation platform and standard operating procedures for production of high-quality photoreceptor precursor cells that are compatible with current good manufacturing practices. This system will enable clinical grade production of iPSCs for autologous retinal cell replacement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976478PMC
http://dx.doi.org/10.1186/s12967-023-03966-2DOI Listing

Publication Analysis

Top Keywords

ipsc generation
12
cell replacement
12
generated cell
12
cell platform
12
cell
9
photoreceptor cell
8
parallel production
8
patient specific
8
clinical grade
8
ipscs generated
8

Similar Publications

TDP-43 mislocalization and pathology occurs across a range of neurodegenerative diseases, but the pathways that modulate TDP-43 in neurons are not well understood. We generated a Halo-TDP-43 knock-in iPSC line and performed a genome-wide CRISPR interference FACS-based screen to identify modifiers of TDP-43 levels in neurons. A meta-analysis of our screen and publicly available screens identified both specific hits and pathways present across multiple screens, the latter likely responsible for generic protein level maintenance.

View Article and Find Full Text PDF

Background: Cystic Fibrosis-related Bone Disease is an emerging challenge faced by 50 % of adult people with cystic fibrosis (CF). The multifactorial causes of this comorbidity remain elusive. However, congenital bone defects have been observed in animal models with CFTR mutations, suggesting its importance.

View Article and Find Full Text PDF

TDCPP promotes apoptosis and inhibits the calcium signaling pathway in human neural stem cells.

Sci Total Environ

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

Tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) is an extensively used organophosphorus flame retardant (OFR). Previous studies have suggested that it has neurotoxic effects, but the neurotoxicity mechanism is still unclear. Neural stem cells are an important in vitro model for studying the neurotoxicity mechanism of pollutants.

View Article and Find Full Text PDF

Placentation disorders, including severe preeclampsia and fetal growth restriction, have their origins in early pregnancy, whereas symptoms typically present later on. To investigate the pathogenesis of these diseases, there is a need for a reliable in vitro model system of early placenta development with known pregnancy outcomes. Therefore, we optimized the generation of human induced trophoblast stem cells (iTSCs) from term umbilical cord, enabling non-invasive collection of patient-derived material immediately after birth.

View Article and Find Full Text PDF

Prime editing (PE) is a CRISPR-based tool for genome engineering that can be applied to generate human induced pluripotent stem cell (hiPSC)-based disease models. PE technology safely introduces point mutations, small insertions, and deletions (indels) into the genome. It uses a Cas9-nickase (nCas9) fused to a reverse transcriptase (RT) as an editor and a PE guide RNA (pegRNA), which introduces the desired edit with great precision without creating double-strand breaks (DSBs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!