PpyMYB144 directly activates the promoter of PpyCYP86B1, promotes the synthesis of α, ω-diacids, and involves in pear fruit skin russeting. Russeting is an economically important surface disorder in pear (Pyrus pyrifolia) fruit. Previous research has demonstrated that suberin is the pivotal chemical component contributing to pear fruit skin russeting, and fruit bagging treatment effectively reduces the amount of suberin of fruits, and thereby reduces the russeting phenotype. However, the mechanisms of pear fruit skin russeting remain largely unclear, particularly the transcriptional regulation. Here, we dissected suberin concentration and composition of pear fruits along fruit development and confirmed that α, ω-diacids are the predominant constituents in russeted pear fruit skins. Two cytochrome P450 monooxygenase (CYP) family genes (PpyCYP86A1 and PpyCYP86B1) and nine MYB genes were isolated from pear fruit. Expressions of PpyCYP86A1, PpyCYP86B1, and five MYB genes (PpyMYB34, PpyMYB138, PpyMYB138-like, PpyMYB139, and PpyMYB144) were up-regulated during fruit russeting and showed significant correlations with the changes of α, ω-diacids. In addition, dual-luciferase assays indicated that PpyMYB144 could trans-activate the promoter of PpyCYP86B1, and the activation was abolished by motif mutagenesis of AC element on the PpyCYP86B1 promoter. Further, Agrobacterium-mediated transient expression of PpyCYP86B1 and PpyMYB144 in pear fruits induced the deposition of aliphatic suberin. Thus, PpyMYB144 is a novel direct activator of PpyCYP86B1 and contributes to pear fruit skin russeting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-023-04102-6 | DOI Listing |
Foods
January 2025
Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China.
The 'Jingbaili' pear is a national geographical indication product of China, featuring an oblate shape and being rich in nutrients. But the quality of the 'Jingbaili' pear is unstable. Xenia can cause changes in the quality of pears, but the effect of xenia on the 'Jingbaili' pear is unknown, and its mechanism is still unclear.
View Article and Find Full Text PDFExp Appl Acarol
January 2025
College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
The citrus red mite (CRM), Panonychus citri (McGregor) (Acari: Tetranychidae), a worldwide pest chiefly infesting Citrus plants, has spread from Southern China to Northern China. Little information is known about the population performance of CRM on the plants except for citrus trees and pear trees. In order to evaluate the extent of damage might caused by CRM to the fruit trees cultivated in Northern China, the performance of CRM on four Rosaceae species, including three main fruit tree species (pear-Pyrus pyrifolia Nakai cv.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China.
Whether the calyx tube of the Korla fragrant pear falls off seriously affects the fruit quality. 'Xinnonglinxiang' is a mutant variety of the Korla fragrant pear, which has a high calyx removal rate under natural conditions, and calyx tube fall seriously affects the fruit quality. The mechanism behind the high calyx removal rate of 'Xinnonglinxiang' remains unclear; thus, Korla fragrant pear (PT) and 'Xinnonglinxiang' (YB) with different degrees of calyx abscission were used as examples and the abscission areas of calyx tubes were collected in the early (21 April), middle (23 April), and late (25 April) shedding stages to explore the regulatory mechanism behind the abscission.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China.
Pear fruit brown rot, caused by , affects pear fruit yields and quality. The present study determined T6 (T6) peptaibols as a biological control alternative to synthetic fungicides and assessed its efficacy against through dual plate culture and surface spraying at different concentrations. T6 peptaibols effectively inhibited growth, achieving an 85.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Life Sciences, Shihezi University, Shihezi, 832000, China. Electronic address:
Pyrus sinkiangensis, a crucial economic fruit tree in Xinjiang, China, experiences winter hardiness that significantly influences its yield and fruit quality. This study aimed to investigate the role of PsHB7/12 in cold resistance of Pyrus sinkiangensis and its regulation of abscisic acid (ABA) signaling. Through physiological assessments and transcriptome analysis, we identified a peak expression of PsHB7/12 in January, which was strongly induced by ABA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!