AI Article Synopsis

  • A composite of orange peels magnetic activated carbon (MG-OPAC) was synthesized and analyzed for its properties such as surface area and magnetic characteristics.
  • The material exhibited a super-paramagnetic state and allowed for efficient absorption of hexavalent chromium, being influenced by several factors like contact time and pH.
  • Various adsorption isotherms and kinetic models were employed to study the absorption behavior, with the pseudo-second-order model providing the best fit for the experimental data.

Article Abstract

This work prepared a composite of orange peels magnetic activated carbon (MG-OPAC). The prepared composite was categorized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), Energy-dispersive X-ray spectroscopy (EDX), Scanning Electron Microscopy (SEM) and vibrating-sample magnetometer (VSM) analyses. The MG-OPAC composite showed the surface area (155.09 m/g), the total volume of pores (0.1768 cm/g), and the mean diameter of pores (4.5604 nm). The saturation magnetization (Ms = 17.283 emu/g), remanence (Mr = 0.28999 emu/g) and coercivity (Hc = 13.714 G) were reported for the prepared MG-OPAC. Likewise, at room temperature, the MG-OPAC was in a super-paramagnetic state, which could be collected within 5 S (< 5 S) with an outside magnetic field. Influence of time of contact, absorbent dose, starting concentration of Cr ions, and pH were tested to adjust the absorption process. The absorption behavior of MG-OPAC for hexavalent chromium was investigated by Langmuir (LIM), Freundlich (FIM) and Temkin (TIM) isotherm models (IMs). Applicability of LIM specifies that Cr ions absorption procedure may be monolayer absorption. The maximum monolayer capacity (Q) premeditated by LIM was 277.8 mg/g. Similarly, the absorption process was tested with different kinetic models like intraparticle diffusion (IPDM), pseudo-first-order (PFOM), Elovich (EM), pseudo-second-order (PSOM), and Film diffusion (FDM). The PSOM was best fitted to the experimental results of Cr ions absorption with R ranging between 0.992 and 1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975187PMC
http://dx.doi.org/10.1038/s41598-023-30161-6DOI Listing

Publication Analysis

Top Keywords

orange peels
8
peels magnetic
8
carbon mg-opac
8
mg-opac composite
8
prepared composite
8
mg-opac
5
magnetic activate
4
activate carbon
4
composite
4
composite formation
4

Similar Publications

Formulation optimization and characterization of biodegradable containers incorporated with orange peel powder and tamarind seed powder.

J Food Sci Technol

February 2025

Dept. of Food Processing Tech. A. D. Patel Institute of Technology, Charutar Vidya Mandal University, New Vallabh Vidyanagar, Anand, Gujarat India.

Unlabelled: A huge amount of fruits and vegetables is being produced and processed in India and therefore the waste is also generated in high quantities. These wastes are good sources of vitamins, enzymes, cellulose, and many other essential compounds. The non-utilization of these bio-wastes leads to economic loss and also environmental problems.

View Article and Find Full Text PDF

The growing global population has led to increased food consumption and a significant amount of food waste, including the non-consumed parts of fruits (e.g., stems, rinds, peels, seeds).

View Article and Find Full Text PDF

The objective of this study was to conduct a comparative analysis of the performance of hydrogels prepared from two distinct raw materials and to identify the hydrogels with the optimal overall capacity for dry farming applications. Ten grafted polymer hydrogels were prepared from melon peel (MP) and orange peel (OP). A comparative analysis of the degree of swelling, water absorption time, pH range, reusability, and soil water retention and water-holding capacity of the two hydrogels revealed that the MP-based hydrogels exhibited superior performance in all evaluated parameters when compared to their OP-based counterparts.

View Article and Find Full Text PDF

Differentiating Tangerine Peels from Other through GC-MS, UPLC-Q-Exactive Orbitrap-MS, and HPLC-PDA.

ACS Omega

January 2025

The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.

The nonvolatile and volatile compounds in the peels of 13 cultivars (4 mandarins, 5 tangerines, and 4 hybrids) and 5 (sweet oranges) cultivars were analyzed. Initially, 66 volatile compounds were detected using gas chromatography-mass spectrometry (GC-MS). Tangerines were distinguished from other citrus cultivars (mandarins, sweet oranges, hybrids) by having higher volatile oil extraction rates and higher relative contents of o-Cymene, α-Terpinene, d-α-Pinene, Terpinolene, γ-Terpinene, l-β-Pinene, and 3-Thujene.

View Article and Find Full Text PDF

Genomic analysis and potential polyhydroxybutyrate (PHB) production from Bacillus strains isolated from extreme environments in Mexico.

BMC Microbiol

January 2025

Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.

Background: Plastic pollution is a significant environmental problem caused by its high resistance to degradation. One potential solution is polyhydroxybutyrate (PHB), a microbial biodegradable polymer. Mexico has great uncovered microbial diversity with high potential for biotechnological applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!