High Electrochromic Performance of Perylene Bisimide/ZnO Hybrid Films: An Efficient, Energy-Saving, and Green Route.

ACS Appl Mater Interfaces

International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

Published: March 2023

The composite or hybrid of organic and inorganic materials is one of the common ways to improve the properties of photoelectric functional materials. Perylene bisimide (PBI) derivatives, as large π-conjugated organic small molecules, are a class of photoelectric functional materials with excellent performance. However, there were few reports on PBIs in the electrochromic field due to the difficulty of film-forming caused by their generally poor solubility. Here, water-soluble PBI derivatives (PDI-COOH and PCl-COOH) were synthesized. The hybrid films (ZnO@PDI-COOH/PCl-COOH) formed by the coordination bond and π-π stacking were prepared via a simple solution immersion method. Fourier transform infrared spectrometry and X-ray diffraction as well as scanning electron microscopy, and energy-dispersive spectrometry results further confirmed the formation of hybrid films. At the same time, electrochemical and spectroelectrochemical analyses revealed that the films have reversible redox activity and cathodic electrochromic properties, which can change from orange-red to purple. The ZnO@PDI-COOH hybrid film formed by coordination bonds exhibits fast switching times (1.7 s colored time and 2.6 s bleached time), good stability (retain 92.41% contrast after 2400 cycles), a low driving voltage (-0.6-0 V), and a high coloration efficiency (276.14 cm/C). The corresponding electrochromic devices also have good electrochromic properties. On this basis, a large-area (100 mm × 100 mm) electrochromic display device with fine patterning was fabricated by using the hybrid film, and the device shows excellent reversible electrochromic performance. This idea of constructing organic-inorganic hybrid materials with coordination bonds provides an effective, energy-saving, and green method, which is expected to promote the large-scale and fine production of electrochromic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c22029DOI Listing

Publication Analysis

Top Keywords

hybrid films
12
electrochromic performance
8
energy-saving green
8
photoelectric functional
8
functional materials
8
pbi derivatives
8
formed coordination
8
electrochromic properties
8
hybrid film
8
coordination bonds
8

Similar Publications

Spontaneous Formation of Single-Crystalline Spherulites in a Chiral 2D Hybrid Perovskite.

J Am Chem Soc

January 2025

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.

In two-dimensional (2D) chiral metal-halide perovskites (MHPs), chiral organic spacers induce structural chirality and chiroptical properties in the metal-halide sublattice. This structural chirality enables reversible crystalline-glass phase transitions in (-NEA)PbBr, a prototypical chiral 2D MHP where NEA represents 1-(1-naphthyl)ethylammonium. Here, we investigate two distinct spherulite states of (-NEA)PbBr, exhibiting either radial-like or stripe-like banded patterns depending on the annealing conditions of the amorphous film.

View Article and Find Full Text PDF

Electrostatic and Electronic Effects on Doped Nickel Oxide Nanofilms for Water Oxidation.

J Am Chem Soc

January 2025

School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Tyree Energy Technologies Building, 229 Anzac Parade, Kensington, NSW 2052, Australia.

An ideal water-splitting electrocatalyst is inexpensive, abundant, highly active, stable, selective, and durable. The anodic oxygen evolution reaction (OER) is the main bottleneck for H production with a complex and not fully resolved mechanism, slow kinetics, and high overpotential. Nickel oxide-based catalysts (NiO) are highly active and cheaper than precious metal catalysts.

View Article and Find Full Text PDF

Atomically Fine-Tuning Organic-Inorganic Carbon Molecular Sieve Membranes for Hydrogen Production.

ACS Nano

January 2025

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.

Polymeric membranes with great processability are attractive for the H/CO separation required for hydrogen production from renewable biomass with carbon capture for utilization and sequestration. However, it remains elusive to engineer polymer architectures to obtain desired sub-3.3 Å ultramicropores to efficiently sieve H from CO.

View Article and Find Full Text PDF

Iminophosphoranes with the general formula (RP═NR') have great potential in synthetic chemistry as valuable precursors/intermediates in organic synthesis or as building blocks for various organic compounds. However, the synthetic approaches and conditions to prepare iminophosphoranes are still poorly understood, limiting the utility of this chemistry for organic materials. In this article, a simple and efficient synthesis of previously unattainable poly(arylene iminophosphoranes) is reported.

View Article and Find Full Text PDF

The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!