Background/aim: An increasing number of studies are reporting anticancer activity of widely used antiparasitic drugs and particularly benzimidazoles. Fenbendazole is considered safe and tolerable in most animal species at the effective doses as an anthelmintic. Little is known about the redox-modulating properties of fenbendazole and the molecular mechanisms of its antiproliferative effects. Our study aimed to investigate the possibility of selective redox-mediated treatment of triple-negative breast cancer cells by fenbendazole without affecting the viability and redox status of normal breast epithelial cells.

Materials And Methods: The experiments were performed on three cell lines: normal breast epithelial cells (MCF-10A) and cancer breast epithelial cells (MCF7 - luminal adenocarcinoma, low metastatic; MDA-MB-231 - triple-negative adenocarcinoma, highly metastatic). Cells were treated with fenbendazole for 48-h and three parameters were analyzed using conventional assays: cell viability and proliferation, level of intracellular superoxide, and level of hydroperoxides.

Results: The data demonstrated that MDA-MB-231 cells were more vulnerable to fenbendazole-induced oxidative stress than MCF-7 cells. In normal breast epithelial cells MCF-10A, fenbendazole significantly suppressed oxidative stress compared to untreated controls. These data correlate with the effect of fenbendazole on cell viability and the IC values, which is indirect evidence of the potential targeting anticancer effect of the drug, especially in MDA-MB-231 cells.

Conclusion: The difference in the levels of oxidative stress induced by fenbendazole in MDA-MB-231 and MCF-7 indicates that the two types of breast cancer respond to the drug through different redox-related mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.21873/anticanres.16267DOI Listing

Publication Analysis

Top Keywords

breast epithelial
16
breast cancer
12
normal breast
12
epithelial cells
12
oxidative stress
12
anticancer activity
8
fenbendazole
8
triple-negative breast
8
cells
8
cancer cells
8

Similar Publications

In vitro antitumor effects of methanolic extracts of three Ganoderema mushrooms.

Sci Rep

January 2025

Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.

Ganoderma mushrooms have a variety of pharmacological activities and may have antitumor effects. Therefore, the antitumor activity of the methanolic fruiting body extracts of three Ganoderma spp. will be evaluated by estimating cell viability, cell cycle parameters and the mode of cellular death.

View Article and Find Full Text PDF

Some novel sulphonyl thiourea derivatives (7a-m) containing 4,6-diarylpyrimidine rings were designed and synthesized using a one-pot procedure. These compounds exhibited remarkable dual inhibitory activity against human carbonic anhydrase CA I, CA II, CA IX, and XII isoenzymes and some cancer cell lines. Among them, some thioureas had significantly more potent inhibitory activities in the order of 7l > 7c > 7f (against the CA I isoform), 7f > 7b > 7c (against the CA II isoform), 7c > 7g > 7a > 7b (against the CA IX isoform), and 7d > 7c > 7g > 7f (against the CA XII isoform).

View Article and Find Full Text PDF

HER2-positive (+) breast cancer is an aggressive disease with poor prognosis, a narrative that changed drastically with the advent and approval of trastuzumab, the first humanized monoclonal antibody targeting HER2. In addition to another monoclonal antibody, more classes of HER2-targeted agents, including tyrosine kinase inhibitors, and antibody-drug conjugates were developed in the years that followed. While these potent therapies have substantially improved the outcome of patients with HER2+ breast cancer, resistance has prevailed as a clinical challenge ever since the arrival of targeted agents.

View Article and Find Full Text PDF

This chapter reviews tumor-associated myeloid cells, including macrophages, neutrophils, and other innate immune cells, and their multifaceted roles in supporting breast cancer progression and metastasis. In primary tumors, myeloid cells play key roles in promoting tumor epithelial-mesenchymal transition (EMT) and invasion. They can facilitate intravasation (entry into the bloodstream) and colonization, disrupting the endothelial cell layer and reshaping the extracellular matrix.

View Article and Find Full Text PDF

Metabolic Reprogramming and Adaption in Breast Cancer Progression and Metastasis.

Adv Exp Med Biol

January 2025

Department of Molecular Biology, Princeton University, Princeton, NJ, USA.

Recent evidence has revealed that cancer is not solely driven by genetic abnormalities but also by significant metabolic dysregulation. Cancer cells exhibit altered metabolic demands and rewiring of cellular metabolism to sustain their malignant characteristics. Metabolic reprogramming has emerged as a hallmark of cancer, playing a complex role in breast cancer initiation, progression, and metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!