Cancer tissues generally have molecular oxygen and serum component deficiencies because of poor vascularization. Recently, we revealed that ICAM1 is strongly activated through lipophagy in ovarian clear cell carcinoma (CCC) cells in response to starvation of long-chain fatty acids and oxygen and confers resistance to apoptosis caused by these harsh conditions. CD69 is a glycoprotein that is synthesized in immune cells and is associated with their activation through cellular signaling pathways. However, the expression and function of CD69 in nonhematological cells is unclear. Here, we report that CD69 is induced in CCC cells as in ICAM1. Mass spectrometry analysis of phosphorylated peptides followed by pathway analysis revealed that CD69 augments CCC cell binding to fibronectin (FN) in association with the phosphorylation of multiple cellular signaling molecules including the focal adhesion pathway. Furthermore, CD69 synthesized in CCC cells could facilitate cell survival because the CD69-FN axis can induce epithelial-mesenchymal transition. Experiments with surgically removed tumor samples revealed that CD69 is predominantly expressed in CCC tumor cells compared with other histological subtypes of epithelial ovarian cancer. Overall, our data suggest that cancer cell-derived CD69 can contribute to CCC progression through FN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236627 | PMC |
http://dx.doi.org/10.1111/cas.15774 | DOI Listing |
Therapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.
View Article and Find Full Text PDFFront Immunol
January 2025
Translational Radiobiology Lab, Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany.
Background: Esophageal cancer has a poor prognosis despite treatment advancements. Although the benefit of neoadjuvant chemoradiotherapy (CRT) followed by adjuvant immunotherapy is evident, the effects of CRT on PD-L1 expression in esophageal cancer are not well understood. This study examines the impact of neoadjuvant CRT on PD-L1 surface expression in esophageal cancer both and considering its implications for immunotherapy.
View Article and Find Full Text PDFCell Discov
January 2025
Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China.
Ampullary adenocarcinoma (AMPAC) is a rare and heterogeneous malignancy. Here we performed a comprehensive proteogenomic analysis of 198 samples from Chinese AMPAC patients and duodenum patients. Genomic data illustrate that 4q loss causes fatty acid accumulation and cell proliferation.
View Article and Find Full Text PDFAm J Surg Pathol
January 2025
Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France.
Lymphomas of T-follicular helper origin (T-follicular helper-cell lymphoma [TFHL]) are often accompanied by an expansion of B-immunoblasts, occasionally with Hodgkin/Reed-Sternberg-like (HRS-like) cells, making the differential diagnosis with classic Hodgkin lymphoma (CHL) difficult. We compared the morphologic, immunophenotypic, and molecular features of 15 TFHL and 12 CHL samples and discussed 4 challenging cases of uncertain diagnosis. Compared with CHL, TFHL disclosed more frequent sparing of subcortical sinuses, high-endothelium venule proliferation, dendritic cell meshwork expansion, T-cell atypia, and aberrant T-cell immunophenotype.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory (Precision Medicine), Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China. Electronic address:
The immunosuppressive tumor microenvironment (TME) plays a crucial role in the progression and treatment resistance of melanoma. Modulating the TME is thus a key strategy for enhancing therapeutic outcomes. Recent studies have identified clonidine (CLD), an α2-adrenergic receptor agonist, as a promising agent that enhances T lymphocyte infiltration and reduces myeloid-derived suppressor cells within the TME, thereby promoting antitumor immune responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!