Tissue engineering has emerged as the best alternative to replacing damaged tissue/organs. However, the cost of scaffold materials continues to be a significant obstacle; thus, developing inexpensive scaffolds is strongly encouraged. In this study, cellulose microfibers (C), gelatin (G), egg white (EW), and nanohydroxyapatite (nHA) were assembled into a quaternary scaffold using EDC-NHS crosslinking, followed by freeze-drying method. Cellulose microfibers as a scaffold have only received a limited amount of research due to the absence of an intrinsic three-dimensional structure. Gelatin, more likely to interact chemically with collagen, was used to provide a stable structure to the cellulose microfibers. EW was supposed to provide the scaffold with numerous cell attachment sites. nHA was chosen to enhance the scaffold's bone-bonding properties. Physico-chemical, mechanical, and biological characterization of scaffolds were studied. In-vitro using MG-63 cells and in-ovo studies revealed that all scaffolds were biocompatible. The results of the DPPH assay demonstrate the ability of CGEWnHA to reduce free radicals. The CGEWnHA scaffold exhibits the best properties with 56.84 ± 28.45 μm average pore size, 75 ± 1.4 % porosity, 39.23 % weight loss, 109.19 ± 0.98 kPa compressive modulus, and 1.72 Ca/P ratio. As a result, the constructed CGEWnHA scaffold appears to be a viable choice for BTE applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.123812 | DOI Listing |
Sci Bull (Beijing)
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:
The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.
View Article and Find Full Text PDFNano Lett
January 2025
Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi, Saitama 359-8513, Japan.
Nanostructuring surfaces is an emergent strategy to endow materials with abilities to combat pathogenic bacteria. Nevertheless, it remains challenging to create nanospike structures on the curved surfaces of polymer materials, including gauze and other microfibrous medical materials. Additionally, the effects of nanostructured surfaces on bacteria in the presence of proteins and in vivo remain largely unexplored.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China. Electronic address:
Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still remains challenge to develop hydrogel through facile and sustainable methods. In this work, a conductive, flexible, bendable and self-healing hydrogel (PBCM) composed of polyvinyl alcohol (PVA), borax, cellulose microfibers (CMFs) and MXene nanosheets was fabricated by a simple and efficient strategy.
View Article and Find Full Text PDFAdv Mater
January 2025
Hangzhou Institute of Technology, Xidian University, Hangzhou, 311231, P. R. China.
Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter.
View Article and Find Full Text PDFSci Rep
January 2025
Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
Cigarette filter microplastics are composed of cellulose acetate that does not undergo biological or photo-degradation. These microplastics are readily dispersed and can be found abundantly in water, soil, and air. These fibers possess high absorption capabilities, allowing them to collect and retain pollutants such as toxic elements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!