Modulating the allergenicity and functional properties of peanut protein by covalent conjugation with polyphenols.

Food Chem

School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China; State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong Province, PR China. Electronic address:

Published: July 2023

Peanut protein is a common food allergen. Our previous study demonstrated that the allergenicity of Ara h1 declines after covalent conjugation with polyphenols in vitro; however, how polyphenols affect the structure, function, and allergenicity of peanut protein extract (PPE) after covalent conjugating needs clarifying. Here, we assessed how the structure, function, and allergenicity of PPE changed after covalent conjugation with epigallocatechin-3-gallate (PPE-EGCG) and chlorogenic acid (PPE-CA). PPE covalently conjugated with EGCG and CA using the alkali treatment method. Multi-spectroscopy showed that the structure of PPE-EGCG/CA conjugate changed, becoming less folded. In contrast, the functional properties of PPE significantly improved. The allergenicity of PPE-EGCG/CA significantly declined in vitro and in vivo experiments. Our findings confirm that covalent conjugation of PPE with EGCG and CA reduces the allergenicity and improves the functional properties of PPE by changing the structure of the protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.135733DOI Listing

Publication Analysis

Top Keywords

covalent conjugation
16
functional properties
12
peanut protein
12
conjugation polyphenols
8
structure function
8
function allergenicity
8
properties ppe
8
ppe
6
covalent
5
allergenicity
5

Similar Publications

Chemically engineered antibodies for autophagy-based receptor degradation.

Nat Chem Biol

January 2025

Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Cell surface receptor-targeted protein degraders hold promise for drug discovery. However, their application is restricted because of the complexity of creating bifunctional degraders and the reliance on specific lysosome-shuttling receptors or E3 ubiquitin ligases. To address these limitations, we developed an autophagy-based plasma membrane protein degradation platform, which we term AUTABs (autophagy-inducing antibodies).

View Article and Find Full Text PDF

A Conjugated Oligomer with Drug Efflux Pump Inhibition and Photodynamic Therapy for Synergistically Combating Resistant Bacteria.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China.

High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria.

View Article and Find Full Text PDF

Designing and realizing new topologies represent one of the most important ways toward developing new structures and functionalities for molecule-based frameworks including SOFs, MOFs, and COFs. Herein, Aldol condensation between 5,10,15,20-tetrayl(tetrakis(([1,1':3',1''-terphenyl]-4,4''-dicarbaldehyde)))-porphyrin (TTEP) and 2,4,6-trimethyl-1,3,5-triazine (TMT) affords the vinylene-linked 3D covalent organic framework Por-COF-cya. Powder X-ray diffraction (PXRD) in combination with structural simulation reveals its high crystalline structure with an unprecedented cya topology in the molecule-based frameworks reported thus far.

View Article and Find Full Text PDF

Impact of cold plasma-assisted Non-thermal deamidation and glycosylation on the construction of sugar derivative-zein conjugates for enhancing pickering foam stability: Technical principles and molecular interactions.

Food Res Int

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, No. 9, No. 13 Ave., TEDA, Tianjin 300457, China. Electronic address:

There is an urgent need for stable, plant-based Pickering foams to address the growing consumer demand for sustainable, low-calorie, aerated sweet foods. This study employed a cold plasma-assisted deamidation and glycosylation (CPDG) approach to promote hydrophilic reassembly of zein, resulting in the formation of sugar derivative-zein conjugates. This was accomplished by coupling deamidated zein with polyhydroxy sugars including sucralose (Suc), maltitol (Mal), mannitol (Man), and stevioside (Ste).

View Article and Find Full Text PDF

The adsorption of radioactive iodine is a critical concern in nuclear safety and environmental protection due to its hazardous nature and long half-life. Covalent organic frameworks (COFs) have emerged as promising materials for capturing radioactive iodine owing to their tunable porosity, high surface area, and versatile functionalization capabilities. This review provides a comprehensive overview of the application of COFs in the adsorption of radioactive iodine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!