Hybrid nanoparticles are innovative invention of last decade designed to overcome limitations of single-component nanoparticles by introducing multiple functionalities through combining two or more different nanoparticles. In this study, we are reporting development of magneto-fluorescent hybrid nanoparticles by combining iron oxide and carbon nanoparticles to enablefluorescence imaging which also has all the required characteristic properties to use as Magnetic Resonance Imaging (MRI) contrast agent. In order to achieve dual-functional imaging, alginate and pullulan coated super paramagnetic iron oxide nanoparticles (ASPION and PSPION) and Carbon dots (Cdts) were synthesised separately. ASPIONs and PSPIONs were further chemically conjugated with Cdts and developed dual-functional nanohybrid particles ASPION-Cdts and PSPION-Cdts. Subsequently, evaluation of the materials for its size, functionalisation efficiency, fluorescence and magnetic properties, biocompatibility and cellular uptake efficiency has been carried out. Fluorescence imaging of liver fibrosis was performedin rodent model of liver fibrosis using the two nanohybrids, which is further confirmed by high fluorescence signal from the harvested liver.

Download full-text PDF

Source
http://dx.doi.org/10.1088/2050-6120/acc009DOI Listing

Publication Analysis

Top Keywords

iron oxide
12
liver fibrosis
12
carbon dots
8
imaging liver
8
hybrid nanoparticles
8
nanoparticles
6
imaging
5
fluorescent carbon
4
dots tailored
4
tailored iron
4

Similar Publications

Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.

View Article and Find Full Text PDF

Monodisperse and colloidally stable magnetic iron oxide nanoparticles have been developed for diverse biotechnology applications. Although promising for the adsorption of organic molecules, the low density of adsorption sites in these nanoparticles has been a significant challenge. In this study, an optimized factorial design with response surface methodology (RSM) was employed to produce small Superparamagnetic Iron Oxide Nanoparticles (SPIONs) stabilized with tetraethoxysilane (TEOS).

View Article and Find Full Text PDF

The redox aspects of lithium-ion batteries.

Energy Environ Sci

December 2024

Institute of Chemical Science and Engineering, Station 6, Ecole Polytechnique Federale de Lausanne CH-1015 Lausanne Switzerland

This article aims to present the redox aspects of lithium-ion batteries both from a thermodynamic and from a conductivity viewpoint. We first recall the basic definitions of the electrochemical potential of the electron, and of the Fermi level for a redox couple in solutions. The Fermi level of redox solids such as metal oxide particles is then discussed, and a Nernst equation is derived for two ideal systems, namely an ideally homogenous phase where the oxidised and reduced metal ions are homogeneously distributed and two segregated phases where the oxidised and the reduced metal ions are separated in two distinct phases such as observed, for example, in biphasic lithium iron phosphate.

View Article and Find Full Text PDF

Chemical associations of selenium oxyanions in metal oxides derived from layered double hydroxides: Implication for the immobilization of radionuclides.

Environ Res

January 2025

School of Creative Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo 169-8050, Japan; Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan. Electronic address:

Layered double hydroxides (LDHs) can effectively stabilize Se oxyanions, yet the thermal stability of Se oxyanions incorporated into LDHs remains unclear. In this study, calcination products of three types of LDHs loaded with SeO2- 3 or SeO2-4 were analyzed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray absorption fine structure spectroscopy (XAFS) and leaching tests. It has been found that SeO2-4 can be reduced to SeO2- 3 in the Fe-containing LDHs after calcination at temperatures above 450 °C.

View Article and Find Full Text PDF

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!