There is a design-to-function knowledge gap regarding how engineered stream restoration structures can maximize hyporheic contaminant attenuation. Surface and subsurface structures have each been studied in isolation as techniques to restore hyporheic exchange, but surface-subsurface structures have not been investigated or optimized in an integrated manner. Here, we used a numerical model to systematically evaluate key design variables for combined surface (i.e., weir height and length) and subsurface (i.e., upstream and downstream baffle plate spacing) structures. We also compared performance metrics that place differing emphasis on hyporheic flux versus transit times. We found that surface structures tended to create higher flux, shorter transit time flowpaths, whereas subsurface structures promoted moderate-flux, longer transit time flowpaths. Optimal combined surface-subsurface structures could increase fluxes and transit times simultaneously, thus providing conditions for contaminant attenuation that were many times more effective than surface or subsurface structures alone. All performance metrics were improved by the presence of an upstream plate and the absence of a downstream plate. Increasing the weir length tended to improve all metrics, whereas the optimal weir height varied based on metrics. These findings may improve stream restoration by better aligning specific restoration goals with appropriate performance metrics and hyporheic structure designs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c05967DOI Listing

Publication Analysis

Top Keywords

stream restoration
12
subsurface structures
12
performance metrics
12
structures
9
combined surface-subsurface
8
restoration structures
8
contaminant attenuation
8
surface subsurface
8
surface-subsurface structures
8
weir height
8

Similar Publications

Optimal allocation of technical reclamation and ecological restoration for a cost-effective solution in Pingshuo Opencast Coal Mine area of China.

J Environ Manage

January 2025

School of Land Science and Technology, China University of Geosciences, 29 Xueyuan Road, Haidian District, 100083, Beijing, People's Republic of China.

Limiting adverse consequences of mining activities requires ecosystem restoration efforts, whose arrangement around mining areas is poorly designed. It is unclear, however, where best to locate ecological projects to enhance ecosystem services cost-effectively. To answer this question, we conducted an optimized ecological restoration project planning by the Resource Investment Optimization System (RIOS) model to identify the restoration priority areas in the Pingshuo Opencast Coal Mine region in Shanxi Province.

View Article and Find Full Text PDF

Carbon reduction effect of comprehensive land consolidation and its configuration paths at the township level: A case study of Zhejiang Province, China.

J Environ Manage

January 2025

College of Management of Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Key Laboratory of Philosophy and Social Science, National Key Laboratory of Food Security and Tianfu Granary, Sichuan Agricultural University, Chengdu, 611130, China. Electronic address:

Changing land use is one of the main factors influencing global climate change and the imbalance in the carbon cycle. Consequently, the focus of international organizations and the academic community is on strategies to mitigate carbon emissions or improve carbon sequestration by optimizing land use structure and function. Since 2019, China's Zhejiang Province has implemented a township-level pilot policy, exploring a comprehensive land consolidation (CLC for short) pilot policy that includes all elements of "mountains, rivers, forests, farmlands, lakes, and grasslands.

View Article and Find Full Text PDF

The community dynamic alterations mechanisms of traveling plastics in the Pearl River estuary with the salinity influence.

Water Res

December 2024

College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China. Electronic address:

Most ocean plastics originate from terrestrial emissions, and the plastisphere on the plastics would alter during the traveling due to the significant differences in biological communities between freshwater and marine ecosystems. Microorganisms are influenced by the increasing salinity during traveling. To understand the contribution of plastic on the alteration in biological communities of plastisphere during traveling, this study investigated the alterations in microbial communities on plastics during the migration from freshwater to brackish water and saltwater.

View Article and Find Full Text PDF

Forests are often crisscrossed by a vast road network due to extractive activity. Previous studies have shown that this network can include many abandoned logging roads and deteriorated culverts, which can disrupt aquatic habitat connectivity. Yet, there is still little known about the drivers of culvert condition.

View Article and Find Full Text PDF

Enhanced coagulation of Microcystis aeruginosa using titanium xerogel coagulant.

Chemosphere

December 2024

Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan, 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, 430068, China. Electronic address:

Cyanobacterial blooms are prevalent globally and present a significant threat to water security. Titanium salt coagulants have garnered considerable attention due to their superior coagulation properties and the absence of metal residue risks. This paper explored the influencing factors in the coagulation process of titanium xerogel coagulant (TXC), the alterations in cell activity during floc storage, and the release of cyanobacterial organic matters, thereby determining the application scope of TXC for cyanobacterial water treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!