Global warming potential (GWP) estimates from agroecosystems are valuable for understanding management effects on climate regulation services. However, GWP estimates are complex, including attributes with high spatiotemporal variability. Published GWP estimates from cropland were compiled and methodological attributes known to influence GWP were extracted. Results revealed considerable variation in approaches to estimate GWP. Among carbon balance methods, respiration methods were used most frequently (33%), followed by soil carbon stock change over time (30%). Twenty-six percent of studies did not account for carbon change in GWP estimates. Duration of gas flux measurements ranged from 0.5 to 60 months, with weekly and sub-weekly sampling most common (34% and 33%, respectively). Carbon dioxide equivalent conversion factors generally aligned with Intergovernmental Panel on Climate Change recommendations through 2014 but diverged thereafter. This review suggests the need for increased transparency in how GWP estimates are derived and communicated. Presentation of key metadata alongside GWP estimates is recommended.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jeq2.20467 | DOI Listing |
Int J Environ Res Public Health
November 2024
Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Considerable attention has recently been given to the contribution of the greenhouse gas (GHG) emissions of the healthcare sector to climate change. GHGs used in medical practice are regularly released into the atmosphere and contribute to elevations in global temperatures that produce detrimental effects on the environment and human health. Consequently, a comprehensive assessment of their global warming potential over 100 years (GWP) characteristics, and clinical uses, many of which have evaded scrutiny from policy makers due to their medical necessity, is needed.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela, 1B, 13071, Ciudad Real, Spain.
In this work, the rate coefficients for OH radical, k(T), and Cl atom, k(T), reaction with allyl 1,1,2,2-tetrafluoroethyl ether, CH=CHCHOCFCHF, were studied as a function of temperature and pressure in a collaborative effort made between UCLM, Spain, and LAPKIN, Greece. OH rate coefficients were determined in UCLM, between 263 and 353 K and 50-600 Torr, using the absolute rate method of pulsed laser photolysis-laser-induced fluorescence technique, while Cl kinetics were studied in temperature (260-363 K) and pressure (34-721 Torr) ranges, using the relative rate method of the thermostated photochemical reactor equipped with Fourier transform infrared spectroscopy as the detection technique. In both OH and Cl reactions, a negative temperature dependence of the measured rate coefficients was observed, which is consistent with complex association reactions.
View Article and Find Full Text PDFJ Environ Sci (China)
May 2025
Laboratorio Universitario de Química y Contaminación del Aire (L.U.Q.C.A), Instituto de Investigaciones en Fisicoquímica de Córdoba (I.N.F.I.Q.C.), Dpto. de Fisicoquímica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina. Electronic address:
Rate coefficients of the gas-phase reactions of Cl atoms with a series of fluorinated diketones (FDKs): CFC(O)CHC(O)CH (TFP), CFC(O)CHC(O)CHCH (TFH) and CFC(O)CHC(O)CH(CH) (TFMH), have been measured at (298 ± 2) K and under atmospheric pressure. The experiments were performed using the relative-rate method with a GC-FID detection system. From different determinations and references used, the following rate coefficients were obtained (in cm/(molecule·sec)): k(TFP + Cl) = (1.
View Article and Find Full Text PDFNPJ Clim Atmos Sci
September 2024
Ducks Unlimited Canada, Stonewall, MB Canada.
There is debate about the use of wetlands as natural climate solutions due to their ability to act as a "double-edged sword" with respect to climate impacts by both sequestering CO while emitting CH. Here, we used a process-based greenhouse gas (GHG) perturbation model to simulate wetland radiative forcing and temperature change associated with wetland state conversion over 500 years based on empirical carbon flux measurements, and CO-equivalent (CO-e.q.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2024
Department of Chemistry, Indian Institute of Technology, Guwahati, Assam - 781039, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!