Assessment of homozygosity in transgenic plants using selectable markers.

STAR Protoc

Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India. Electronic address:

Published: March 2023

Production of homozygous transgenic plants is a prerequisite for the phenotypic analysis and/or for the commercial release of transgenic plants for cultivation. Here we present a simple protocol for the selection of homozygous transgenics using antibiotics as a selectable marker. The protocol has been used to select homozygous rice transgenic plants using hygromycin antibiotic. However, the described protocol can be used for selction of homozygous in any transgenic plants using a appropriate selectable marker. For complete details on the use and execution of this protocol, please refer to Passricha et al. (2016)..

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922950PMC
http://dx.doi.org/10.1016/j.xpro.2022.102031DOI Listing

Publication Analysis

Top Keywords

transgenic plants
20
homozygous transgenic
8
selectable marker
8
transgenic
5
plants
5
assessment homozygosity
4
homozygosity transgenic
4
plants selectable
4
selectable markers
4
markers production
4

Similar Publications

Overexpressing OsNF-YB12 elevated the content of jasmonic acid and impaired drought tolerance in rice.

Plant Sci

January 2025

Shanghai Agrobiological Gene Center, Shanghai, 201106 China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China. Electronic address:

Nuclear factor Y (NF-Y) is an evolutionarily conserved heterotrimeric transcription factor in eukaryotes. In a previous study, OsNF-YB12 was confirmed to be associated with drought tolerance using the Ecotilling method. In this study, real-time quantitative RT-PCR revealed that OsNF-YB12 was induced by various abiotic stresses and phytohormones, with expression levels differing between leaves and roots.

View Article and Find Full Text PDF

Natural variation of CTB5 confers cold adaptation in plateau japonica rice.

Nat Commun

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.

During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.

View Article and Find Full Text PDF

The exogenous application of RNAi technology offers new promises for crops improvement. Cell-based or synthetically produced strands are economical, non-transgenic and could induce the same responses. The substantial population growth demands novel strategies to produce crops without further damaging the environment.

View Article and Find Full Text PDF

Coronaviruses continue to disrupt health and economic productivity worldwide. Porcine epidemic diarrhea virus (PEDV) is a devastating swine disease and SARS-CoV-2 is the latest coronavirus to infect the human population. Both viruses display a similar spike protein on the surface that is a target of vaccine development.

View Article and Find Full Text PDF

The frequent occurrence of extreme weather conditions in the world has brought many unfavorable factors to plant growth, causing the growth and development of plants to be hindered and even leading to plant death, with abiotic stress hindering the growth and metabolism of plants due to severe uncontrollability. The WHY1 transcription factor plays a critical role in regulating gene expression in plants, influencing chlorophyll biosynthesis, plant growth, and development, as well as responses to environmental stresses. The important role of the gene in regulating plant growth and adaptation to environmental stress has become a hot research topic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!