Since tumor stroma poses as a barrier to achieve efficacy of nanomedicines, it is essential to evaluate nano-chemotherapeutics in stroma-mimicking 3D models that reliably predict their behavior regarding these hurdles limiting efficacy. In this study, we evaluated the effect of paclitaxel-loaded polymeric micelles (PTX-PMCs) and polymeric nanoparticles (PTX-PNPs) in a tumor stroma-mimicking 3D in vitro model. PTX-PMCs (77 nm) based on a amphiphilic block copolymer of mPEG-b-p(HPMAm-Bz) and PTX-PNPs (159 nm) based on poly(lactic-co-glycolic acid) were prepared, which had an encapsulation efficiency (EE%) of 81 ± 15% and 45 ± 8%, respectively. 3D homospheroids of mouse 4T1 breast cancer cells and heterospheroids of NIH3T3 fibroblasts and 4T1 (5:1 ratio) were prepared and characterized with high content two-photon microscopy and immunostaining. Data showed an induction of epithelial-mesenchymal transition (α-SMA) in both homo- and heterospheroids, while ECM (collagen) deposition only in heterospheroids. Two-photon imaging revealed that both fluorescently labeled PMCs and PNPs penetrated into the core of homospheroids and only PMCs penetrated into heterospheroids. Furthermore, PTX-PMCs, PTX-PNPs, and free PTX induced cytotoxicity in tumor cells and fibroblasts grown as monolayer, but these effects were substantially reduced in 3D models, in particular in heterospheroids. Gene expression analysis showed that heterospheroids had a significant increase of drug resistance markers (Bcl2, Abgc2) compared to 2D or 3D monocultures. Altogether, this study shows that the efficacy of nanotherapeutics is challenged by stroma-induced poor penetration and development of resistant phenotype. Therefore, this tumor stroma-mimicking 3D model can provide an excellent platform to study penetration and effects of nanotherapeutics before in vivo studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102101 | PMC |
http://dx.doi.org/10.1007/s13346-023-01310-1 | DOI Listing |
J Control Release
November 2024
Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074 Aachen, Germany. Electronic address:
Controlled manufacturing and long-term stability are key challenges in the development and translation of nanomedicines. This is exemplified by the mRNA-nanoparticle vaccines against COVID-19, which require (ultra-)cold temperatures for storage and shipment. Various cryogenic protocols have been explored to prolong nanomedicine shelf-life.
View Article and Find Full Text PDFIt is hypothesized that layer-by-layer acetate-coated Paclitaxel-loaded PLGA nanoparticles (F2) can be engineered to potentiate the effectiveness of Paclitaxel (PTX) on LNCaP, a human prostate cancer cell line. The core of the layer-by-layer NPs is formed by nanoprecipitation, and the shell of the NPs is engineered using the sodium acetate's unique coating mechanism and surface-active properties. The resulting nanoformulation physicochemical properties are characterized by Fourier Transform Infra-Red (FTIR), Differential Scanning Calorimetry (DSC) Transmission Electron Microscopy (TEM), NanoSight NS300, spectrophotometry, Korsmeyer-Peppas model, respectively.
View Article and Find Full Text PDFBioconjug Chem
September 2024
Boston University, Departments of Chemistry and Biomedical Engineering, Boston, Massachusetts 02215, United States.
ACS Biomater Sci Eng
July 2024
Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
Anticancer drugs are often associated with limitations such as poor stability in aqueous solutions, limited cell membrane permeability, nonspecific targeting, and irregular drug release when taken orally. One possible solution to these problems is the use of nanocarriers of drug molecules, particularly those with targeting ability, stimuli-responsive properties, and high drug loading capacity. These nanocarriers can improve drug stability, increase cellular uptake, allow specific targeting of cancer cells, and provide controlled drug release.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
May 2024
School of Science, North China University of Science and Technology, Tangshan, PR China.
The dissipative particle dynamics (DPD) simulation was used to study the morphologies and structures of the paclitaxel-loaded PLA-b-PEO-b-PLA polymeric micelle. We focused on the influences of PLA block length, PLA-b-PEO-b-PLA copolymer concentration, paclitaxel drug content on morphologies and structures of the micelle. Our simulations show that: (i) with the PLA block length increase, the self-assemble structure of PLA-b-PEO-b-PLA copolymers with paclitaxel vary between onion-like structure (core-middle layer-shell) to spherical core-shell structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!