Background: In pancreatic cancer, systemic treatment options in addition to chemotherapy remain scarce, and so far only a small proportion of patients benefit from targeted therapies.

Objective: The patients with pancreatic cancer discussed in the CCCMunich Molecular Tumor Board were reviewed to gain a better real-world understanding of the challenges and chances of precision oncology in this hard-to-treat cancer.

Methods: Patients with pancreatic cancer who received comprehensive genomic profiling and were discussed in the interdisciplinary Molecular Tumor Board between May 2017 and July 2022 were included. These patients' medical charts, comprehensive genomic profiling results, and Molecular Tumor Board recommendations were analyzed in this retrospective cohort study.

Results: Molecular profiles of 165 patients with pancreatic cancer were discussed in the Molecular Tumor Board. In the 149 cases where comprehensive genomic profiling was successful, KRAS mutations were detected in 87.9%, TP53 in 53.0%, and CDKN2A in 14.1%. 33.3% of KRAS wild-type patients harbored targetable mutations, while these were only found in 19.1% of patients with the KRAS mutation; however, this difference was not statistically significant. 63.8% of patients with successful testing received a targeted treatment recommendation by the Molecular Tumor Board; however, only 3.2% of these were put into practice. Compared to a historic cohort of patients with pancreatic cancer with synchronous metastatic disease diagnosed between 2010 and 2017, the patients from the pancreatic cancer cohort with synchronous metastatic disease had a longer survival.

Conclusions: This single-center experience emphasizes the challenges of targeted treatment in pancreatic cancer. Very few patients ultimately received the recommended therapies, highlighting the need for more and better targeted treatment options in pancreatic cancer, early comprehensive genomic profiling to allow sufficient time to put Molecular Tumor Board recommendations into practice, and close cooperation with clinical trial units to give patients access to otherwise not available targeted treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10042756PMC
http://dx.doi.org/10.1007/s11523-023-00950-0DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
36
molecular tumor
28
tumor board
28
patients pancreatic
20
comprehensive genomic
16
genomic profiling
16
targeted treatment
12
patients
11
pancreatic
9
cancer
9

Similar Publications

CBA-1205 is a novel humanized antibody targeting delta-like 1 homolog (DLK1) that enhances antibody-dependent cellular cytotoxicity activity. DLK1 overexpression has been reported in various cancer types, such as hepatocellular carcinoma and neuroblastoma. CBA-1205 demonstrates potent antitumor activity in multiple tumor models, making it a potential treatment option for DLK1-expressing cancers.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) has high mortality. The role and regulatory mechanism of hsa_circ_0021727 (circ_0021727) in ESCC remain largely unknown. This study focused on the undiscovered impact of circ_0021727 on cell cycle progression, apoptosis, and angiogenesis of ESCC.

View Article and Find Full Text PDF

Background: Peritoneal metastasis (PM) after the rupture of hepatocellular carcinoma (HCC) is a critical issue that negatively affects patient prognosis. Machine learning models have shown great potential in predicting clinical outcomes; however, the optimal model for this specific problem remains unclear.

Methods: Clinical data were collected and analyzed from 522 patients with ruptured HCC who underwent surgery at 7 different medical centers.

View Article and Find Full Text PDF

Background: Orthotopic murine models of pancreatic cancer represent an important tool for evaluating treatment strategies. Several genetically modified mouse tumors and xenograft models have been reported. Genetic models have unpredictable growth and variable waiting period, while orthotopic models are operative ones, difficult to create and result in irregular metastasis.

View Article and Find Full Text PDF

LncRNA HOXA10-AS as a novel biomarker and therapeutic target in human cancers.

Front Mol Biosci

January 2025

Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China.

Long non-coding RNAs (lncRNAs) are crucial regulatory molecules that participate in numerous cellular development processes, and they have gathered much interest recently. HOXA10 antisense RNA (HOXA10-AS, also known as HOXA-AS4) is a novel lncRNA that was identified to be dysregulated in some prevalent malignancies. In this review, the clinical significance of HOXA10-AS for the prognosis of various cancers is analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!