Off-target activity of NBOMes and NBOMe analogs at the µ opioid receptor.

Arch Toxicol

Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.

Published: May 2023

New psychoactive substances (NPS) are introduced on the illicit drug market at a rapid pace. Their molecular targets are often inadequately elucidated, which contributes to the delayed characterization of their pharmacological effects. Inspired by earlier findings, this study set out to investigate the µ opioid receptor (MOR) activation potential of a large set of psychedelics, substances which typically activate the serotonin (5-HT) receptor as their target receptor. We observed that some substances carrying the N-benzyl phenethylamine (NBOMe) structure activated MOR, as confirmed by both the NanoBiT® βarr2 recruitment assay and the G protein-based AequoScreen® Ca release assay. The use of two orthogonal systems proved beneficial as some aspecific, receptor independent effects were found for various analogs when using the Ca release assay. The specific 'off-target' effects at MOR could be blocked by the opioid antagonist naloxone, suggesting that these NBOMes occupy the same common opioid binding pocket as conventional opioids. This was corroborated by molecular docking, which revealed the plausibility of multiple interactions of 25I-NBOMe with MOR, similar to those observed for opioids. Additionally, structure-activity relationship findings seen in vitro were rationalized in silico for two 25I-NBOMe isomers. Overall, as MOR activity of these psychedelics was only noticed at high concentrations, we consider it unlikely that for the tested compounds there will be a relevant opioid toxicity in vivo at physiologically relevant concentrations. However, small modifications to the original NBOMe structure may result in a panel of more efficacious and potent MOR agonists, potentially exhibiting a dual MOR/5-HT activation potential.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00204-023-03465-9DOI Listing

Publication Analysis

Top Keywords

opioid receptor
8
activation potential
8
nbome structure
8
release assay
8
mor
6
opioid
5
receptor
5
off-target activity
4
activity nbomes
4
nbomes nbome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!