Excessive Iodine Enabled Ultrathin Inorganic Perovskite Growth at the Liquid-Air Interface.

Angew Chem Int Ed Engl

School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China.

Published: May 2023

The liquid-air interface offers a platform for the in-plane growth of free-standing materials. However, it is rarely used for inorganic perovskites and ultrathin non-layered perovskites. Herein the liquid-air interfacial synthesis of inorganic perovskite nanosheets (Cs Bi I , Cs Sb I ) is achieved simply by drop-casting the precursor solution with only the addition of iodine. The products are inaccessible without iodine addition. The thickness and lateral size of these nanosheets can be adjusted through the iodine concentration. The high volatility of the iodine spontaneously drives precursors that normally stay in the liquid to the liquid-air interface. The iodine also repairs in situ iodine vacancies during perovskite growth, giving enhanced optical and optoelectronic properties. The liquid-air interfacial growth of ultrathin perovskites provides multi-degree-of-freedom for constructing perovskite-based heterostructures and devices at atomic scale.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202218546DOI Listing

Publication Analysis

Top Keywords

liquid-air interface
12
inorganic perovskite
8
perovskite growth
8
liquid-air interfacial
8
iodine
6
liquid-air
5
excessive iodine
4
iodine enabled
4
enabled ultrathin
4
ultrathin inorganic
4

Similar Publications

We present experiments involving oscillating droplets in aqueous cyclodextrin-surfactant solutions. In these experiments, α-cyclodextrin (αCD) and anionic surfactants exhibit remarkable viscoelasticity at the liquid/air interface, with dilatational modulus varying across orders of magnitude. This rheological response depends on the concentrations of different complexes in the solution, particularly of the 2 : 1 inclusion complexes formed by two αCD molecules (αCD), and one surfactant (S).

View Article and Find Full Text PDF

Egg (oocyte) vitrification is the dominant method for preserving fertility for women of reproductive age. However, the method is typically performed by hand, requiring precise (∼0.1 to 10 μL) and time-sensitive (∼1 s) liquid exchange of cryoprotectants (CPA) around eggs as well as fine handling of eggs (∼100 μm) for immersion into liquid nitrogen (LN).

View Article and Find Full Text PDF

Hydrogen-bonded organic frameworks (HOFs) are emerging as multifunctional materials with exceptional biocompatibility, abundant active sites, and tunable porosity, which are highly beneficial for advanced wound care. However, a significant challenge involves transforming pristine HOFs powders into lightweight, ultrathin, freestanding membranes compatible with soft biological systems. Herein, the study successfully develops shape-adaptive HOF-based matrix membranes (HMMs) using a polymer-assisted liquid-air interface technique.

View Article and Find Full Text PDF

Lyso-phosphatidylcholine as an interfacial stabilizer for parenteral monoclonal antibody formulations.

Eur J Pharm Biopharm

November 2024

Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13 B, 81377 Munich, Germany. Electronic address:

Therapeutic proteins suffer from physical and chemical instability in aqueous solution. Polysorbates and poloxamers are often added for protection against interfacial stress to prevent protein aggregation and particle formation. Previous studies have revealed that the hydrolysis and oxidation of polysorbates in parenteral formulations can lead to the formation of free fatty acid particles, insufficient long-term stabilization, and protein oxidation.

View Article and Find Full Text PDF

Triphase Enzyme Electrode Based on ZIF-8 with Enhanced Oxidase Catalytic Kinetics and Bioassay Performance.

ACS Appl Mater Interfaces

August 2024

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Oxidase enzyme-based electrochemical bioassays have garnered considerable interest due to their specificity and high efficiency. However, in traditional solid-liquid diphase enzyme electrode systems, the low solubility of oxygen and its slow mass transfer rate limit the oxidase catalytic reaction kinetics, thereby affecting the bioassay performance, including the detection accuracy, sensitivity, and linear dynamic range. ZIF-8 nanoparticles (NPs) possess hydrophobic and high-porosity characteristics, enabling them to serve as oxygen nanocarriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!