AI Article Synopsis

Article Abstract

Biofilm formation is important for microbial survival in hostile environments and a phenotype that provides microorganisms with antimicrobial resistance. Zinc oxide (ZnO) and Zinc sulfide (ZnS) nanoparticles (NPs) present potential antimicrobial properties for biomedical and food industry applications. Here, we aimed to analyze, for the first time, the bactericidal and antibiofilm activity of ZnS NPs against Staphylococcus aureus, Klebsiella oxytoca, and Pseudomonas aeruginosa, all medically important bacteria in developed countries. We compared ZnS NPs antimicrobial activity to ZnO NPs, which have been extensively studied. Using the colorimetric XTT reduction assay to observe the metabolic activity of bacterial cells and the crystal violet assay to measure biofilm mass, we demonstrated that ZnS and ZnO had similar efficacy in killing planktonic bacterial cells and reducing biofilm formation, with S. aureus being more susceptible to both therapeutics than K. oxytoca and P. aeruginosa. Crystal violet staining and confocal microscopy validated that Zn NPs inhibit biofilm formation and cause architectural damage. Our findings provide proof of principle that ZnS NPs have antibiofilm activity, and can be potentially used in medical and food industry applications, such as treatment of wound infections or package coating for food preservation. Zinc (Zn)-based nanoparticles (NPs) can be potentially used in medical and food preservation applications. As proof of principle, we investigated the bactericidal and antibiofilm activity of zinc oxide (ZnO) and zinc sulfide (ZnS) NPs against medically important bacteria. Zn-based NPs were similarly effective in killing planktonic and biofilm-associated Staphylococcus aureus, Klebsiella oxytoca, and Pseudomonas aeruginosa cells. However, S. aureus was more susceptible to these investigational therapeutics. Although further studies are warranted, our findings suggest the possibility of future use of Zn-based NPs in the treatment of skin infections or preservation of food.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101090PMC
http://dx.doi.org/10.1128/spectrum.04831-22DOI Listing

Publication Analysis

Top Keywords

biofilm formation
16
zns nps
16
antibiofilm activity
12
nps
10
zinc oxide
8
oxide zno
8
zno zinc
8
zinc sulfide
8
sulfide zns
8
nanoparticles nps
8

Similar Publications

Phenotypic and genotypic characterization of antimicrobial resistance and virulence profiles of serotypes isolated from necropsied horses in Kentucky.

Microbiol Spectr

January 2025

Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, USA.

Unlabelled: is a foodborne pathogen that poses a significant threat to global public health. It affects several animal species, including horses. infections in horses can be either asymptomatic or cause severe clinical illness.

View Article and Find Full Text PDF

Whole-Genome Sequencing of Resistance, Virulence and Regulation Genes in Extremely Resistant Strains of .

Med Sci (Basel)

January 2025

Medical and Pharmaceutical Sciences Group, Faculty of Health Sciences, University of Sucre, Sincelejo 700001, Sucre, Colombia.

Background/objectives: is a clinically significant opportunistic pathogen, renowned for its ability to acquire and develop diverse mechanisms of antibiotic resistance. This study examines the resistance, virulence, and regulatory mechanisms in extensively drug-resistant clinical strains of .

Methods: Antibiotic susceptibility was assessed using the Minimum Inhibitory Concentration (MIC) method, and whole-genome sequencing (WGS) was performed on the Illumina NovaSeq platform.

View Article and Find Full Text PDF

Small RNAs (sRNAs) are a class of molecules capable of perceiving environmental changes and exerting post-transcriptional regulation over target gene expression, thereby influencing bacterial virulence and host immune responses. is a pathogenic bacterium that poses a significant threat to aquatic animal health. However, the regulatory mechanisms of sRNAs in .

View Article and Find Full Text PDF

The dairy industry faces challenges in controlling spoilage microorganisms, particularly , known to form resilient biofilms. Conventional disinfection methods have limitations, prompting the exploration of eco-friendly alternatives like ozone. This study focused on biofilms on polystyrene and polyethylene surfaces, evaluating ozone efficacy when incorporated into different water sources and applied under static and dynamic conditions.

View Article and Find Full Text PDF

Environmental cues sometimes have a direct impact on phage particle stability, as well as bacterial physiology and metabolism, having a profound effect on phage infection outcome. Here, we explore the impact of temperature on the interplay between phage (phiIPLA-RODI) and its host, . Our results show that phiIPLA-RODI is a more effective predator at room (25 °C) compared to body temperature (37 °C) against planktonic cultures of several strains with varying degrees of phage susceptibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!