Glioblastomas are highly heterogeneous brain tumors. Despite the availability of standard treatment for glioblastoma multiforme (GBM), i.e., Stupp protocol, which involves surgical resection followed by radiotherapy and chemotherapy, glioblastoma remains refractory to treatment and recurrence is inevitable. Moreover, the biology of recurrent glioblastoma remains unclear. Increasing evidence has shown that intratumoral heterogeneity and the tumor microenvironment contribute to therapeutic resistance. However, the interaction between intracellular heterogeneity and drug resistance in recurrent GBMs remains controversial. The aim of this study was to map the transcriptome landscape of cancer cells and the tumor heterogeneity and tumor microenvironment in recurrent and drug-resistant GBMs at a single-cell resolution and further explore the mechanism of drug resistance of GBMs. We analyzed six tumor tissue samples from three patients with primary GBM and three patients with recurrent GBM in which recurrence and drug resistance developed after treatment with the standard Stupp protocol using single-cell RNA sequencing. Using unbiased clustering, nine major cell clusters were identified. Upregulation of the expression of stemness-related and cell-cycle-related genes was observed in recurrent GBM cells. Compared with the initial GBM tissues, recurrent GBM tissues showed a decreased proportion of microglia, consistent with previous reports. Finally, vascular endothelial growth factor A expression and the blood-brain barrier permeability were high, and the O -methylguanine DNA methyltransferase-related signaling pathway was activated in recurrent GBM. Our results delineate the single-cell map of recurrent glioblastoma, tumor heterogeneity, tumor microenvironment, and drug-resistance mechanisms, providing new insights into treatment strategies for recurrent glioblastomas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236634 | PMC |
http://dx.doi.org/10.1111/cas.15773 | DOI Listing |
Molecules
January 2025
Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil.
Glioblastomas (GBM) are malignant tumours with poor prognosis. Treatment involves chemotherapy and/or radiotherapy; however, there is currently no standard treatment for recurrence, and prognosis remains unfavourable. Inflammatory mediators and microRNAs (miRNAs) influence the aggressiveness of GBM, being involved in the communication with the cells of the tumour parenchyma, including microglia/macrophages, and maintaining an immunosuppressive microenvironment.
View Article and Find Full Text PDFNat Cancer
January 2025
Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
Patients with metastatic pancreatic ductal adenocarcinoma survive longer if disease spreads to the lung but not the liver. Here we generated overlapping, multi-omic datasets to identify molecular and cellular features that distinguish patients whose disease develops liver metastasis (liver cohort) from those whose disease develops lung metastasis without liver metastases (lung cohort). Lung cohort patients survived longer than liver cohort patients, despite sharing the same tumor subtype.
View Article and Find Full Text PDFCochrane Database Syst Rev
January 2025
Saúde Baseada em Evidências, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
Background: Glioblastoma multiforme (GBM) is the most common and aggressive adult glioma (16-month median survival). Its immunosuppressive microenvironment limits the efficacy of immune checkpoint inhibitors (ICIs).
Objectives: To assess the effects of the ICIs antibodies anti-programmed cell death 1 (anti-PD-1) and anti-programmed cell death ligand 1 (anti-PD-L1) in treating adults with diffuse glioma.
Nat Commun
January 2025
The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
Extensive neovascularization is a hallmark of glioblastoma (GBM). In addition to supplying oxygen and nutrients, vascular endothelial cells provide trophic support to GBM cells via paracrine signaling. Here we report that Endocan (ESM1), an endothelial-secreted proteoglycan, confers enhanced proliferative, migratory, and angiogenic properties to GBM cells and regulates their spatial identity.
View Article and Find Full Text PDFMolecules
December 2024
IRCCS Istituto Neurologico Mediterraneo NEUROMED, Via Atinense 18, 86077 Pozzilli, Italy.
Glioblastoma (GBM) is the most common and aggressive form of brain cancer in adults, characterized by extensive growth, a high recurrence rate, and resistance to treatment. Growing research interest is focusing on the biological roles of natural compounds due to their potential beneficial effects on health. Our research aimed to investigate the effects of lavender essential oil (LEO) on a GBM cell model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!