Computer-based modelling and simulation are developing as effective tools for supplementing biological data processing and interpretation. It helps to accelerate the creation of dosage forms at a lower cost and with the less human effort required to conduct the work. This paper aims to provide a comprehensive description of the different computer simulation models for various drugs along with their outcomes. The data used are taken from different sources, including review papers from Science Direct, Elsevier, NCBI, and Web of Science from 1995-2020. Keywords like - pharmacokinetic, pharmacodynamics, computer simulation, whole-cell model, and cell simulation, were used for the search process. The use of computer simulation helps speed up the creation of new dosage forms at a lower cost and less human effort required to complete the work. It is also widely used as a technique for researching the structure and dynamics of lipids and proteins found in membranes. It also facilitates both the diagnosis and prevention of illness. Conventional data analysis methods cannot assess and comprehend the huge amount, size, and complexity of data collected by in vitro, in vivo, and ex vivo experiments. As a result, numerous in silico computational e-resources, databases, and simulation software are employed to determine pharmacokinetic (PK) and pharmacodynamic (PD) parameters for illness management. These techniques aid in the provision of multiscale representations of biological processes, beginning with proteins and genes and progressing through cells, isolated tissues and organs, and the whole organism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1573409919666230228104901 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!