D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) is a commonly used nonionic surfactant used as a pharmaceutical carrier in different drug delivery systems. TPGS can reverse P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) and also has anticancer activities. It suggests that when designing antitumor drug preparation, it's necessary to take into account the antitumor activity of TPGS. Our in vivo studies showed that TPGS exerted the strongest cytotoxicity in MCF-7-ADR cells when compared with seven other tumor cell lines. The further study revealed TPGS caused apoptosis and blocked MCF-7 cell growth in G2/M phase. Mechanistic insights suggested that TPGS increased intracellular calcium ion concentrations, leading to apoptosis via the mitochondrial pathway. Furthermore, two in vivo experiments were performed. One was TPGS, and DOX solution was administered by tail vein injection on MCF-7-ADR tumor bearing nude mice. The other was temperature sensitive TPGS gel (TPGS-TG) was administered by intratumoral injection on MCF-7-ADR tumor bearing nude mice combined with paclitaxel albumin nanoparticles (Abraxane) administered by tail vein injection. The findings confirmed that TPGS could play its role in anti-tumor to reduce the toxicity of chemotherapeutic drugs and improve the efficiency of drug-resistant tumors, thereby enhancing the development of safe oncology therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980031PMC
http://dx.doi.org/10.1080/10717544.2023.2183830DOI Listing

Publication Analysis

Top Keywords

tpgs
10
administered tail
8
tail vein
8
vein injection
8
injection mcf-7-adr
8
mcf-7-adr tumor
8
tumor bearing
8
bearing nude
8
nude mice
8
exploration inhibition
4

Similar Publications

Nanocrystalline formulations typically contain stabilizing additives to minimize the risk of particle growth or agglomeration. This risk is particularly relevant when the nanosuspension is converted into a solid drug product as the original state of the nanosuspension should be restored upon redispersion of the drug product in vivo. In this work, the behavior of different nonionic and anionic surfactants in solid nanocrystalline formulations and their effects on redispersibility under biorelevant conditions were investigated.

View Article and Find Full Text PDF

Background/objectives: The objective of this paper is to design a novel film-forming system (FFS) based on Eudragit E PO (EuE) polymeric solutions, differing in volatile solvents (i.e., isopropanol and ethanol) and plasticizers (i.

View Article and Find Full Text PDF

Usnic acid (UA) is one of the most abundant secondary metabolites of lichens. Its antibacterial, anti-inflammatory, antiviral, and antitumor properties make it one of the few commercially available lichens compounds. Owing to its low solubility it has limited application, for that reason encapsulation in polymeric micelles (UA-PM) has been used to solve this aspect.

View Article and Find Full Text PDF

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Micelle-enabled bromination of α-oxo ketene dithioacetals: mild and scalable approach enzymatic catalysis.

Org Biomol Chem

January 2025

Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

The bromination of α-oxo ketene dithioacetals using KBr/HO, catalyzed by vanadium chloroperoxidase (VCPO), has been successfully demonstrated. A comparative study of enzymatic processes "on water" "in water", using 2 wt% of the surfactant TPGS-750-M revealed that the in-water protocol not only provides higher yields but also accommodates a broader substrate scope. This bromination method in an aqueous micellar medium enabled the preparation of brominated α-oxo ketene dithioacetals in fair to excellent yields (23 examples).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!