Poststroke aphasia typically results from brain damage to the left-lateralized language network. The contribution of the right-lateralized homologues in aphasia recovery remains equivocal. In this longitudinal observational study, we specifically investigated the role of right hemisphere structural connectome in aphasia recovery. Twenty-two patients with aphasia after a left hemispheric stroke underwent comprehensive language assessment at the early subacute and chronic stages. A novel structural connectometry approach, using multi-shell diffusion-weighted MRI data collected at the early subacute stage, was used to evaluate the relationship between right hemisphere white matter connectome and language production and comprehension abilities at early subacute stage. Moreover, we evaluated the relationship between early subacute right hemisphere white matter connectome and longitudinal change in language production and comprehension abilities. All results were corrected for multiple comparisons. Connectometry analyses revealed negative associations between early subacute stage right hemisphere structural connectivity and language production, both cross-sectionally and longitudinally (p < .0125). In turn, only positive associations between right hemisphere structural connectivity and language comprehension were observed, both cross-sectionally and longitudinally (p < .0125). Interhemispheric connectivity was highly associated with comprehension scores. Our results shed light on the discordant interpretations of previous findings, by providing evidence that while some right hemisphere white matter pathways may make a maladaptive contribution to the recovery of language, other pathways support the recovery of language, especially comprehension abilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10089089 | PMC |
http://dx.doi.org/10.1002/hbm.26252 | DOI Listing |
Neurorehabil Neural Repair
January 2025
Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA.
Background: In humans, most spontaneous recovery from motor impairment after stroke occurs in the first 3 months. Studies in animal models show higher responsiveness to training over a similar time-period. Both phenomena are often attributed to a milieu of heightened plasticity, which may share some mechanistic overlap with plasticity associated with normal motor learning.
View Article and Find Full Text PDFZool Res
January 2025
Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong 266071, China. E-mail:
Substantial evidence points to the early onset of peripheral inflammation in the development of Parkinson's disease (PD), supporting the "body-first" hypothesis. However, there remains a notable absence of PD-specific animal models induced by inflammatory cytokines. This study introduces a novel mouse model of PD driven by the proinflammatory cytokine CXCL1, identified in our previous research.
View Article and Find Full Text PDFBrain Commun
January 2025
Queensland Aphasia Research Centre, University of Queensland, Brisbane 4029, Australia.
The integrity of the frontal segment of the corpus callosum, forceps minor, is particularly susceptible to age-related degradation and has been associated with cognitive outcomes in both healthy and pathological ageing. The predictive relevance of forceps minor integrity in relation to cognitive outcomes following a stroke remains unexplored. Our goal was to evaluate whether the heterogeneity of forceps minor integrity, assessed early after stroke onset (2-6 weeks), contributes to explaining variance in longitudinal outcomes in post-stroke aphasia.
View Article and Find Full Text PDFFront Neurosci
January 2025
Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Introduction: Dysarthria is a motor speech disorder frequently associated with subcortical damage. However, the precise roles of the subcortical nuclei, particularly the basal ganglia and thalamus, in the speech production process remain poorly understood.
Methods: The present study aimed to better understand their roles by mapping neuroimaging, behavioral, and speech data obtained from subacute stroke patients with subcortical lesions.
BMC Neurol
January 2025
Department of Neurology, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
Background: Purulent meningitis poses a significant clinical challenge with high mortality. We present the case of a 54-year-old female transferred to our emergency department with suspected bacterial meningitis, later diagnosed as an Austrian syndrome.
Case Presentation: The patient exhibited subacute somnolence, severe headache, nausea and fever.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!