Fungal communities are diverse and abundant in coastal waters, yet, their ecological roles and adaptations remain largely unknown. To address these gaps, ITS2 metabarcoding and metatranscriptomic analyses were used to capture the whole suite of fungal diversity and their metabolic potential in water column and sediments in the Yellow Sea during August and October 2019. ITS2 metabarcoding described successfully the abundance of Dikarya during August and October at the different examined habitats, but strongly underrepresented or failed to identify other fungal taxa, including zoosporic and early-diverging lineages, that were abundant in the mycobiome as uncovered by metatranscriptomes. Metatranscriptomics also revealed enriched expression of genes annotated to zoosporic fungi (e.g., chytrids) mainly in the surface water column in October. This enriched expression was correlated with the two-fold increase in chlorophyll-a intensity attributed to phytoplanktonic species which are known to be parasitized by chytrids. The concurrent high expression of genes related to calcium signalling and GTPase activity suggested that these metabolic traits facilitate the parasitic lifestyle of chytrids. Similarly, elevated expression of phagosome genes annotated to Rozellomycota, an early-diverging fungal phylum not fully detected with ITS2 metabarcoding, suggested that this taxon utilizes a suite of feeding modes, including phagotrophy in this coastal setting. Our data highlight the necessity of using combined approaches to accurately describe the community structure of coastal mycobiome. We also provide in-depth insights into the fungal ecological roles in coastal waters, and report potential metabolic mechanisms utilized by fungi to cope with environmental stresses that occur during distinct seasonal months in coastal ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.16905DOI Listing

Publication Analysis

Top Keywords

coastal waters
12
its2 metabarcoding
12
fungal communities
8
ecological roles
8
water column
8
august october
8
enriched expression
8
expression genes
8
genes annotated
8
fungal
6

Similar Publications

On the effectiveness of the red alga Laurencia microcladia as a PAH biomonitor in coastal marine ecosystems.

Environ Sci Pollut Res Int

December 2024

Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.

Anthropogenic pressures affect large stretches of Mediterranean coastal environments, determining alterations, including chemical pollution, able to impair ecosystem functioning and services. Among the pollutants of major concern for their toxicity and persistence, there are polycyclic aromatic hydrocarbons (PAHs), which can be effectively monitored through bioaccumulation approaches. However, the main biomonitor of PAHs in the Mediterranean Sea, Posidonia oceanica, is currently undergoing extensive regressions due to anthropogenic pressures, forcing the search for alternative biomonitors.

View Article and Find Full Text PDF

Stable isotopes of carbon (δC) and nitrogen (δN) are commonly employed to reconstruct past change in marine ecosystems and nutrient cycling. However, multiple biogeochemical and physical drivers govern spatiotemporal variability of these isotopic signals, particularly in dynamic coastal systems, complicating interpretation. Here, we coupled a modern multi-year (2010-2019) δC and δN isoscape record from intertidal mussels (Mytilus californianus) with high-resolution ocean model output and satellite chlorophyll-a observations in the California Current System (32°-43° N) to identify major drivers of isotopic variability.

View Article and Find Full Text PDF

Dissolved oxygen depletion in Chinese coastal waters.

Water Res

December 2024

State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China. Electronic address:

Estuarine and coastal environments have experienced dissolved oxygen (DO hereafter) depression and hypoxia due to increasingly intensified anthropogenic eutrophication and climate warming. This review compared diverse systems in Chinese coastal waters that experience DO depletion or hypoxia, aiming to identify essential aspects in advancing the abilities in comprehensively understanding DO dynamics across systems that span wide ranges of physical and biogeochemical environments. The coastal DO depression and relevant ecological consequences around the world are generally overviewed.

View Article and Find Full Text PDF

Niche and interspecific association of dominant zooplankton species near the Taishan coastal area in the South China Sea.

Mar Environ Res

December 2024

Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangdong Provincial Key Laboratory of Fishery Ecology Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen 518120, China. Electronic address:

Marine zooplankton communities represent one of the most diverse and abundant species groups on earth. To investigate the ecological niche characteristics and interspecific interactions of marine zooplankton, and to elucidate their role in carbon deposition and biogeochemical cycling, we conducted a study on the zooplankton community near Taishan in the South China Sea between December 2015 and September 2016. Using niche breadth, niche overlap, the variance ratio method, chi-square tests, and linkage coefficients, we analyzed the interrelationships among the major zooplankton species.

View Article and Find Full Text PDF

Archaeological sites in deltaic regions face increasing environmental threats. This study provides the first assessment of seawater intrusion and land subsidence impacts on archaeological sites in the Nile Delta through hydrochemical investigations, InSAR techniques, and multi-criteria decision analysis of 33 sites. The results reveal that 80.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!