Harmattan is a season of dry, cold, dusty wind, and haze that is peculiar to West Africa. This season and COVID-19 share common conditions such as malaise and respiratory issues like as runny nose, cough and sneezing, and raise a question of a possible relationship that begs to be answered. This study investigated whether the meteorological factors of humidity and wind speed during harmattan have association with COVID-19 incidence and mortality in the 2 major COVID-19 epicenters of Lagos state and the Federal Capital Territory (FCT) in southern and northern geopolitical regions of Nigeria respectively. Data used were from March, 2020 to February, 2022, which corresponded to the period of 2 years after the first case of COVID-19 was detected in Nigeria. Correlation analysis was performed using incidence or mortality data on COVID-19 over the duration of 2 years and during the harmattan periods, as well as the humidity and wind speed data for the corresponding periods. Our results showed that there was no significant correlation between the humidity or wind speed and COVID-19 daily incidence or mortality during the harmattan and non-harmattan periods in Lagos state. In the FCT however, there was a significant positive correlation between humidity and COVID-19 incidence, as well as a negative correlation between wind speed and COVID-19 incidence. No significant correlation existed between humidity or wind speed and daily mortality. Taken together, the findings of this study show that weather components of the harmattan season have association with COVID-19 incidence but not mortality, and the association could vary depending on location.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950808PMC
http://dx.doi.org/10.1177/11786302231156298DOI Listing

Publication Analysis

Top Keywords

wind speed
20
humidity wind
16
covid-19 incidence
16
incidence mortality
16
covid-19
10
meteorological factors
8
harmattan season
8
association covid-19
8
lagos state
8
correlation humidity
8

Similar Publications

Background: While previous reports characterised global and regional variations in RSV seasonality, less is known about local variations in RSV seasonal characteristics. This study aimed to understand the local-level variations in RSV seasonality and to explore the role of geographical, meteorological, and socio-demographic factors in explaining these variations.

Methods: We conducted a systematic literature review to identify published studies reporting data on local-level RSV season onset, offset, or duration for at least two local sites.

View Article and Find Full Text PDF

The Strait of Sicily, a vital marine passage with diverse fauna, is seeing a steep rise in the planning of offshore wind farm projects. This study assesses the acoustic impact of these wind farms on local marine species. Underwater propagation was modeled for three proposed floating wind farms using JASCO's Marine Operations Noise Model (MONM), which integrates a parabolic equation method for frequencies from 10 to 800 Hz and a beam-tracing model for 1 to 25 kHz.

View Article and Find Full Text PDF

Species of the complex cause postbloom fruit drop of citrus and anthracnose fruit rot of strawberries. produces acervuli in diseased citrus flowers and strawberry fruit, surviving asymptomatically on vegetative tissues. Previous studies have suggested that dispersal mechanisms other than windblown rain may be involved in dispersal of conidia of sensu lato.

View Article and Find Full Text PDF

Air pollution has become a major challenge to global urban sustainable development, necessitating urgent solutions. Meteorological variables are key determinants of air quality; however, research on their impact across different urban gradients remains limited, and their mechanisms are largely unexplored. This study investigates the dynamic effects of meteorological variables on air quality under varying levels of urbanization using Kaohsiung City, Taiwan, as a case study.

View Article and Find Full Text PDF

A numerical assessment of the heterogeneous effects of innovative shroud profiles for horizontal axis wind turbine.

Heliyon

January 2025

Mechanical Power Engineering Department, Faculty of Engineering - Mataria, Helwan University, Cairo, 11718, Egypt.

Wind turbine control is critical in power generation from wind, thus assuring great efficiency and cost-effectiveness. This has been a subject of intense research, and its advancements are critical to developing even better and efficient wind turbines. This research looks at several passive flow control mechanisms for horizontal wind turbines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!