The COVID-19 pandemic has engendered significant scientific efforts in the understanding of its infectious agent SARS-CoV-2 and of its associated symptoms. A peculiar characteristic of this virus lies in its ability to challenge our senses, as its infection can lead to anosmia and ageusia. While ocular symptoms, such as conjunctivitis, optic neuritis or dry eyes, are also reported after viral infection, they have lower frequencies and severities, and their functional development is still elusive. Here, using combined technical approaches based on histological and gene profiling methods, we characterized the expression of SARS-CoV-2 binding sites () in the mouse eye. We found that ACE2 was ectopically expressed in subtissular ocular regions, such as in the optic nerve and in the Harderian/intraorbital lacrimal glands. Moreover, we observed an important variation of / expression that is not only dependent on the age and sex of the animal, but also highly heterogenous between individuals. Our results thus give new insight into the expression of SARS-CoV-2 binding sites in the mouse eye and propose an interpretation of the human ocular-associated symptoms linked to SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961464 | PMC |
http://dx.doi.org/10.3390/v15020354 | DOI Listing |
2'- -ribose methylation of the first transcribed base (adenine or A in SARS-CoV-2) of viral RNA mimics the host RNAs and subverts the innate immune response. How nsp16, with its obligate partner nsp10, assembles on the 5'-end of SARS-CoV-2 mRNA to methylate the A has not been fully understood. We present a ∼ 2.
View Article and Find Full Text PDFThe growing body of experimental and computational studies suggested that the cross-neutralization antibody activity against Omicron variants may be driven by balance and tradeoff of multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with the epitope residues remain scarcely characterized. In this study, we performed molecular dynamics simulations, ensemble-based deep mutational scanning of SARS-CoV-2 spike residues and binding free energy computations for two distinct groups of broadly neutralizing antibodies : E1 group (BD55-3152, BD55-3546 and BD5-5840) and F3 group (BD55-3372, BD55-4637 and BD55-5514).
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Medicine, Universite de Montreal, Montreal, QC, Canada.
Severe COVID-19 can trigger a cytokine storm, leading to acute respiratory distress syndrome (ARDS) with similarities to superantigen-induced toxic shock syndrome. An outstanding question is whether SARS-CoV-2 protein sequences can directly induce inflammatory responses. In this study, we identify a region in the SARS-CoV-2 S2 spike protein with sequence homology to bacterial super-antigens (termed P3).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
Personalized neoantigen cancer mRNA vaccines are promising candidates for precision medicine. However, the difficulty of identifying neoantigens heavily hinders their broad applicability. This study developed a universal strategy of anti-tumor mRNA vaccine by harnessing "off-the-shelf" immunity to known antigens.
View Article and Find Full Text PDFFront Immunol
January 2025
Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
Introduction: Though COVID-19 as a public health emergency of international concern (PHEIC) was declared to be ended by the WHO, it continues to pose a significant threat to human society. Vaccination remains one of the most effective methods for preventing COVID-19. While most of the antigenic regions are found in the receptor binding domain (RBD), the N-terminal domain (NTD) of the S protein is another crucial region for inducing neutralizing antibodies (nAbs) against COVID-19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!