AI Article Synopsis

  • The study investigates how SARS-CoV-2 affects inflammation and antiviral responses in K18-hACE2 mice, revealing a strong pro-inflammatory response driven by NF-κB.
  • Infected mice showed increased production of CC and CXC chemokines, while traditional inflammasome markers like IL1β and IL18 were only weakly expressed.
  • The research highlights that the non-structural protein 2 (Nsp2) of SARS-CoV-2 promotes inflammation by activating the NF-κB pathway, suggesting Nsp2 plays a significant role in skewing the immune response during COVID-19.

Article Abstract

COVID-19 is associated with robust inflammation and partially impaired antiviral responses. The modulation of inflammatory gene expression by SARS-CoV-2 is not completely understood. In this study, we characterized the inflammatory and antiviral responses mounted during SARS-CoV-2 infection. K18-hACE2 mice were infected with a Wuhan-like strain of SARS-CoV-2, and the transcriptional and translational expression interferons (IFNs), cytokines, and chemokines were analyzed in mouse lung homogenates. Our results show that the infection of mice with SARS-CoV-2 induces the expression of several pro-inflammatory CC and CXC chemokines activated through NF-κB but weakly IL1β and IL18 whose expression are more characteristic of inflammasome formation. We also observed the downregulation of several inflammasome effectors. The modulation of innate response, following expressions of non-structural protein 2 (Nsp2) and SARS-CoV-2 infection, was assessed by measuring IFNβ expression and NF-κB modulation in human pulmonary cells. A robust activation of the NF-κB p65 subunit was induced following the infection of human cells with the corresponding NF-κB-driven inflammatory signature. We identified that Nsp2 expression induced the activation of the IFNβ promoter through its NF-κB regulatory domain as well as activation of p65 subunit phosphorylation. The present studies suggest that SARS-CoV-2 skews the antiviral response in favor of an NF-κB-driven inflammatory response, a hallmark of acute COVID-19 and for which Nsp2 should be considered an important contributor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964531PMC
http://dx.doi.org/10.3390/v15020334DOI Listing

Publication Analysis

Top Keywords

antiviral responses
8
sars-cov-2 infection
8
p65 subunit
8
nf-κb-driven inflammatory
8
sars-cov-2
7
expression
6
nf-κb
5
sars-cov-2 nsp2
4
nsp2 contributes
4
contributes inflammation
4

Similar Publications

Nitroxoline evidence amoebicidal activity against Acanthamoeba castellanii through DNA damage and the stress response pathways.

Int J Parasitol Drugs Drug Resist

January 2025

Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China. Electronic address:

Acanthamoeba castellanii is a widespread unicellular eukaryote found in diverse environments, including tap water, soil, and swimming pools. It is responsible for severe infections, such as Acanthamoeba keratitis and granulomatous amebic encephalitis, particularly in individuals with immunocompromisation. The ability of protozoans to form dormant and persistent cysts complicates treatment, as current therapies are ineffective against cyst stages and suffer from poor specificity and side effects.

View Article and Find Full Text PDF

Unlabelled: The persistence of HIV-1 reservoirs during combination anti-retroviral therapy (cART) leads to chronic immune activation and systemic inflammation in people with HIV (PWH), associating with a suboptimal immune reconstitution as well as an increased risk of non-AIDS events. This highlights the needs to develop novel therapy for HIV-1 related diseases in PWH. In this study, we assessed the therapeutic effect of CD24-Fc, a fusion protein with anti-inflammatory properties that interacts with danger-associated molecular patterns (DAMPs) and siglec-10, in chronic HIV-1 infection model using humanized mice undergoing suppressive cART.

View Article and Find Full Text PDF

The persistence of HIV-1 proviruses in latently infected cells allows viremia to resume upon treatment cessation. To characterize the resulting immune response, we compare plasma proteomics and single-cell transcriptomics of peripheral blood mononuclear cells (PBMCs) before, during, and after detectable plasma viremia. We observe unique transcriptional signatures prior to viral rebound including a significant increase in CD16 monocytes with increased anti-viral gene expression.

View Article and Find Full Text PDF

Unlabelled: How changes in the quality of anti-viral antibody (Ab) responses due to pre-existing or acquired CD4 T cell insufficiency affect virus evolution during persistent infection are unknown. Using mouse polyomavirus (MuPyV), we found that CD4 T cell depletion before infection results in short-lived plasma cells secreting low-avidity antiviral IgG with limited BCR diversity and weak virus-neutralizing ability. CD4 T cell deficiency during persistent infection incurs a shift from a T-dependent (TD) to T-independent (TI) Ab response, resembling the pre-existing TI Ab response.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), caused by infection with the enveloped RNA betacoronavirus, SARS-CoV-2, led to a global pandemic involving over 7 million deaths. Macrophage inflammatory responses impact COVID-19 severity; however, it is unclear whether macrophages are infected by SARS-CoV-2. We sought to identify mechanisms regulating macrophage expression of ACE2, the primary receptor for SARS-CoV-2, and to determine if macrophages are susceptible to productive infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!