In order to enhance the health and welfare of obese dogs and to facilitate the required loss of body weight, commercial diets are produced with fibrous ingredients. Cellulose is a common dietary fiber used mainly in powdered form. However, other processing forms and fibers are available as fibrous additives. This work aimed to test the effects of different fiber sources on apparent total tract digestibility and fecal quality in dogs. Four diets were fed to eight dogs (experimental design: 4 × 4 Latin square) for a 14-day period each. In addition to a basal diet (CO), three experimental diets varying in fiber sources were used: powdered cellulose (CE), granulated cellulose (GC), and lignocellulose (LC). Dogs fed the CO had lower crude fiber digestibility than those fed the other experimental diets ( < 0.0033). Dogs fed diets supplemented with fiber sources had lower gross energy digestibility (range: 76.2-77.3%) compared with those fed the CO (84.4%). In all groups, the fecal score (consistency and shape) ranged within the optimal values; solely wet fecal output was increased for the fiber groups compared with those on the CO. This study demonstrated that various sources of fiber such as GC and LC can be used as alternatives to CE without restrictions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967778PMC
http://dx.doi.org/10.3390/vetsci10020091DOI Listing

Publication Analysis

Top Keywords

fiber sources
16
fiber
8
digestibility fecal
8
fecal quality
8
experimental diets
8
dogs fed
8
dogs
6
diets
5
fed
5
sources additives
4

Similar Publications

As an endurance multi-sport race, triathlon places significant energy demands on athletes during performance and training. Insufficient energy intake from food can lead to low energy availability (LEA) and Relative Energy Deficiency in Sport (RED-S). We aimed to measure symptoms related to LEA, examine the risk of RED-S, and find how diet relates to the risk of RED-S in highly trained female amateur triathletes.

View Article and Find Full Text PDF

Almond shells (ASs) are a potential source of cellulose that could be obtained through sustainable methods for their valorisation. Biocomposites (BCs) from polyvinyl alcohol (PVA) and cellulose are interesting materials for developing sustainable packaging materials. BC based on PVA and AS cellulose were obtained by melt blending and compression moulding, by using subcritical water extraction at 160 or 180 °C, and subsequent bleaching with sodium chlorite (C) or hydrogen peroxide (P) to purify cellulose.

View Article and Find Full Text PDF

Background: Tartary buckwheat is a plant recognized for its resistance to various environmental stresses. Due to its valuable source of phenolic compounds, is also characterized as a medicinal plant; therefore, the aim of this study was to investigate the drought stress for the levels of phenolic compounds in the morphological parts of the plant.

Methods: This experiment was conducted in 7 L pots under laboratory conditions.

View Article and Find Full Text PDF

Chemically Modified Pineapple Leaf Fibre as a Filler of Polyurethane-Based Composites.

Materials (Basel)

January 2025

Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.

Pineapple leaf fibres represent a biodegradable raw material sourced from renewable resources whose use contributes to reducing the carbon footprint and limiting the amount of waste generated. Their potential applications can effectively decrease the industry's dependence on plastics and support sustainable development, which should accompany the production of modern materials. In this study, polyurethane-based composites reinforced with various types of natural cellulose fillers were developed and investigated.

View Article and Find Full Text PDF

Vegetable Fibers in Cement Composites: A Bibliometric Analysis, Current Status, and Future Outlooks.

Materials (Basel)

January 2025

Department of Construction Engineering and Projects of Engineering, University of Granada, 18071 Granada, Spain.

The use of vegetable fibers (VFs) in cement-based composites has increased in recent years owing to their minimal environmental impact and notable particular properties. VFs have aroused interest within the scientific community because of their potential as a sustainable alternative for construction. This study presents a comprehensive bibliometric analysis of VFs in cement composites using data from the Scopus database and scientometric tools to explore publication trends, influential sources, and research directions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!