Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron and its subvariants (BA.2, BA.4, BA.5) represented the most commonly circulating variants of concern (VOC) in the coronavirus disease 2019 (COVID-19) pandemic in 2022. Despite high vaccination rates with approved SARS-CoV-2 vaccines encoding the ancestral spike (S) protein, these Omicron subvariants have collectively resulted in increased viral transmission and disease incidence. This necessitates the development and characterization of vaccines incorporating later emerging S proteins to enhance protection against VOC. In this context, bivalent vaccine formulations may induce broad protection against VOC and potential future SARS-CoV-2 variants. Here, we report preclinical data for a lipid nanoparticle (LNP)-formulated RNActive N1-methylpseudouridine (N1mΨ) modified mRNA vaccine (CV0501) based on our second-generation SARS-CoV-2 vaccine CV2CoV, encoding the S protein of Omicron BA.1. The immunogenicity of CV0501, alone or in combination with a corresponding vaccine encoding the ancestral S protein (ancestral N1mΨ), was first measured in dose-response and booster immunization studies performed in Wistar rats. Both monovalent CV0501 and bivalent CV0501/ancestral N1mΨ immunization induced robust neutralizing antibody titers against the BA.1, BA.2 and BA.5 Omicron subvariants, in addition to other SARS-CoV-2 variants in a booster immunization study. The protective efficacy of monovalent CV0501 against live SARS-CoV-2 BA.2 infection was then assessed in hamsters. Monovalent CV0501 significantly reduced SARS-CoV-2 BA.2 viral loads in the airways, demonstrating protection induced by CV0501 vaccination. CV0501 has now advanced into human Phase 1 clinical trials (ClinicalTrials.gov Identifier: NCT05477186).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965737 | PMC |
http://dx.doi.org/10.3390/vaccines11020318 | DOI Listing |
Nat Commun
January 2025
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak collectively underscore the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2 subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, we describe a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Division of Clinical Immunology-Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
Background/objectives: New SARS-CoV-2 variants are continuously emerging, making it essential to assess the efficacy of vaccine-induced immune protection. Limited information is available regarding T cell responses to BA.2.
View Article and Find Full Text PDFMicroorganisms
December 2024
KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Virology, Antiviral Drug and Vaccine Research Group, Laboratory of Molecular Vaccinology & Vaccine Discovery (MVVD), 3000 Leuven, Belgium.
The emergence of SARS-CoV-2 variants escaping immunity challenges the efficacy of current vaccines. Here, we investigated humoral recall responses and vaccine-mediated protection in Syrian hamsters immunized with the third-generation Comirnaty Omicron XBB.1.
View Article and Find Full Text PDFInfect Dis Ther
January 2025
Clalit Community Division, Clalit Health Services, Tel Aviv, Israel.
Introduction: The effectiveness of AZD7442 (tixagevimab/cilgavimab) against COVID-19 hospitalizations was determined at 3 and 6 months among immunocompromised individuals in Israel during different variant circulations.
Methods: This was a retrospective cohort study using data from Clalit Health Services in Israel. Immunocompromised individuals eligible to receive AZD7442 300 mg between 15 February and 11 December 2022 were identified.
The emerging of emergent SARS-CoV-2 subvariants has reduced the protective efficacy of COVID-19 vaccines. Therefore, novel COVID-19 vaccines targeting these emergent variants are needed. We designed and prepared CoV072, an mRNA-based vaccine against SARS-CoV-2 Omicron (EG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!