A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Point Cloud Instance Segmentation with Inaccurate Bounding-Box Annotations. | LitMetric

Point Cloud Instance Segmentation with Inaccurate Bounding-Box Annotations.

Sensors (Basel)

Department of Electronic Engineering, Fudan University, Shanghai 200433, China.

Published: February 2023

Most existing point cloud instance segmentation methods require accurate and dense point-level annotations, which are extremely laborious to collect. While incomplete and inexact supervision has been exploited to reduce labeling efforts, inaccurate supervision remains under-explored. This kind of supervision is almost inevitable in practice, especially in complex 3D point clouds, and it severely degrades the generalization performance of deep networks. To this end, we propose the first weakly supervised point cloud instance segmentation framework with inaccurate box-level labels. A novel self-distillation architecture is presented to boost the generalization ability while leveraging the cheap but noisy bounding-box annotations. Specifically, we employ consistency regularization to distill self-knowledge from data perturbation and historical predictions, which prevents the deep network from overfitting the noisy labels. Moreover, we progressively select reliable samples and correct their labels based on the historical consistency. Extensive experiments on the ScanNet-v2 dataset were used to validate the effectiveness and robustness of our method in dealing with inexact and inaccurate annotations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960887PMC
http://dx.doi.org/10.3390/s23042343DOI Listing

Publication Analysis

Top Keywords

point cloud
12
cloud instance
12
instance segmentation
12
bounding-box annotations
8
point
4
inaccurate
4
segmentation inaccurate
4
inaccurate bounding-box
4
annotations
4
annotations existing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!