The zero-shot image classification (ZSIC) is designed to solve the classification problem when the sample is very small, or the category is missing. A common method is to use attribute or word vectors as a priori category features (auxiliary information) and complete the domain transfer from training of seen classes to recognition of unseen classes by building a mapping between image features and a priori category features. However, feature extraction of the whole image lacks discrimination, and the amount of information of single attribute features or word vector features of categories is insufficient, which makes the matching degree between image features and prior class features not high and affects the accuracy of the ZSIC model. To this end, a spatial attention mechanism is designed, and an image feature extraction module based on this attention mechanism is constructed to screen critical features with discrimination. A semantic information fusion method based on matrix decomposition is proposed, which first decomposes the attribute features and then fuses them with the extracted word vector features of a dataset to achieve information expansion. Through the above two improvement measures, the classification accuracy of the ZSIC model for unseen images is improved. The experimental results on public datasets verify the effect and superiority of the proposed methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966441 | PMC |
http://dx.doi.org/10.3390/s23042311 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-GuGyeonggi-Do 16419, Suwon-Si, South Korea.
Process intensification and simplification in biopharmaceutical manufacturing have driven the exploration of advanced feeding strategies to improve culture performance and process consistency. Conventional media design strategies, however, are often constrained by the stability and solubility challenges of amino acids, particularly in large-scale applications. As a result, dipeptides have emerged as promising alternatives.
View Article and Find Full Text PDFAnimal Model Exp Med
January 2025
Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh.
Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
The marine ecosystem is characterized by a rich diversity of bacterial hosts and their phages. The propagation of phages is primarily limited by their ability to adsorb to host cells and is further challenged by various bacterial defense mechanisms. To fully realize the potential of phage therapy in aquaculture, a comprehensive understanding of phage-host interactions and their regulation is essential.
View Article and Find Full Text PDFJ Paediatr Child Health
January 2025
School of Clinical Medicine, The University of New South Wales, Sydney, New South Wales, Australia.
Aim: The introduction and increasing popularity of indoor trampoline facilities has seen increases in the incidence of trampoline park injuries (TPIs), particularly amongst the paediatric population. A challenge to the development of effective injury prevention interventions is the limited study pool of detailed activity and outcome data to provide better understanding of the characteristics of injurious events.
Methods: A cross-sectional study of individuals under 16 years of age hospitalised after TPI from November 2018 to December 2021 was conducted.
Biomacromolecules
January 2025
Instituto de Química de los Materiales, Ambiente y Energía, CONICET, Universidad de Buenos Aires, Intendente Güiraldes 2160, CABA (Buenos Aires) 1428, Argentina.
The study of the phase behavior of polyelectrolyte complex coacervates has attracted significant attention in recent years due to their potential use as membrane-less organelles, microreactors, and drug delivery platforms. In this work, we investigate the mechanism of protein loading in chain-length asymmetric complex coacervates composed of a polyelectrolyte and an oppositely charged multivalent ion. Unlike the symmetric case (polycation + polyanion), we show that protein loading is highly selective based on the protein's net charge: only proteins with charges opposite to the polyelectrolyte can be loaded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!