Conventional methods of measuring total suspended sediments (TSS) and total particulate phosphorus (TPP) are typically low-resolution and miss critical processes that impact their exports in aquatic environments. To create high-resolution TSS and TPP estimates, echo intensity (EI), a biproduct of velocity measurements from acoustic devices, was utilized. An acoustic Doppler velocimeter (ADV) and an acoustic Doppler current profiler (ADCP) were deployed in three locations in the L-29 Canal in South Florida, USA, to obtain estimates near the canal bed and in the water column, respectively. Corrections for transmission losses from the ADCP proved unnecessary due to the low vertical variability in the measured EI. EI calibrations were performed using artificially created TSS obtained from bed sediments (ADV) and gravimetrically measured TSS from water samples that matched the depths and times of the ADCP deployments. The measured TSS values were then analyzed for total phosphorus and converted to TPP estimates. The results showed that high TSS and TPP were caused by the rapid discharge releases typical of managed canals. This work demonstrates that high-resolution estimates are imperative for assessing the effects of such swift hydrologic changes on the potential export of sediments and nutrients to delicate ecosystems downstream.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960507PMC
http://dx.doi.org/10.3390/s23042281DOI Listing

Publication Analysis

Top Keywords

particulate phosphorus
8
acoustic devices
8
canal south
8
south florida
8
florida usa
8
tss tpp
8
tpp estimates
8
acoustic doppler
8
measured tss
8
tss
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!