For patients who are often embarrassed and uncomfortable when exposing their breasts and having them touched by physicians of different genders during auscultation, we are developing a robotic system that performs auscultation over clothing. As the technical issue, the sound obtained through the clothing is often attenuated. This study aims to investigate clothing-induced acoustic attenuation and develop a suppression method for it. Because the attenuation is due to the loss of energy as sound propagates through a medium with viscosity, we hypothesized that the attenuation is improved by compressing clothing and shortening the sound propagation distance. Then, the amplitude spectrum of the heart sound was obtained over clothes of different thicknesses and materials in a phantom study and human trial at varying contact forces with a developed passive-actuated end-effector. Our results demonstrate the feasibility of the attenuation suppression method by applying an optimum contact force, which varied according to the clothing condition. In the phantom experiments, the attenuation rate was improved maximumly by 48% when applying the optimal contact force (1 N). In human trials, the attenuation rate was under the acceptable attenuation (40%) when applying the optimal contact force in all combinations in each subject. The proposed method promises the potential of robotic auscultation toward eliminating gender bias.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959155 | PMC |
http://dx.doi.org/10.3390/s23042260 | DOI Listing |
Introduction: With the increased use of CTs in cases with trimalleolar ankle fractures, bone fragments between the posterior malleolus and the rest of the articular surface tibial plafond surface - described as intercalary fragments (ICFs) - can be recognized. The aim of this study was to determine the ICF size threshold for a significant change in the pressure distribution at the ankle joint, having a considerable impact on the remaining cartilage of the joint.
Design And Methods: Eight human cadaveric lower legs were used, and a posterior malleolus Bartonicek II fracture was created with sequential 2mm, 4mm, 6mm and 8mm ICFs.
Data Brief
June 2024
NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Nutrition and Movement Sciences, Maastricht, the Netherlands.
Data Collection Process: This dataset includes running biomechanics measured using an instrumented treadmill combined with three- dimensional motion capture and surface muscle activation among 19 healthy participants (10 males, 9 females, mean ± SD age 23.6 ± 3.7 years, body height 174.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Science, Hubei University, Wuhan, Hubei, 430062, China.
Recent advances in drug design and compound synthesis have highlighted the increasing need for effective methods of toxicity evaluation. A specialized force sensor, known as the light wavelength-encoded "Chinese guzheng" is developed. This innovative sensor is equipped with optical fiber strings and utilizes a wavelength-encoded fiber Bragg grating (FBG) that is chemically etched to reduce its diameter.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK.
Background: Residual interlimb deficits after anterior cruciate ligament reconstruction (ACLR) can lead to functional maladaptation and increase the risk of reinjury. The tuck jump assessment (TJA) may offer a more effective evaluation of ACLR status as compared with traditional tasks owing to increased risk of altered landing mechanics, asymmetrical landing, and increased knee valgus attributed to the cyclical nature of the task. However, it remains unclear whether altered TJA kinetics resolve over time or persist through return-to-play phases of rehabilitation.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom.
Atomic-scale understanding of important geochemical processes including sorption, dissolution, nucleation, and crystal growth is difficult to obtain from experimental measurements alone and would benefit from strong continuous progress in molecular simulation. To this end, we present a reactive neural network potential-based molecular dynamics approach to simulate the interaction of aqueous ions on mineral surfaces in contact with liquid water, taking Fe(II) on hematite(001) as a model system. We show that a single neural network potential predicts rate constants for water exchange for aqueous Fe(II) and for the exergonic chemisorption of aqueous Fe(II) on hematite(001) in good agreement with experimental observations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!