A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surrogate Modelling for Oxygen Uptake Prediction Using LSTM Neural Network. | LitMetric

Surrogate Modelling for Oxygen Uptake Prediction Using LSTM Neural Network.

Sensors (Basel)

Faculty of Information Technology and Communication Sciences, Tampere University, 33720 Tampere, Finland.

Published: February 2023

Oxygen uptake (V˙O2) is an important metric in any exercise test including walking and running. It can be measured using portable spirometers or metabolic analyzers. Those devices are, however, not suitable for constant use by consumers due to their costs, difficulty of operation and their intervening in the physical integrity of their users. Therefore, it is important to develop approaches for the indirect estimation of V˙O2-based measurements of motion parameters, heart rate data and application-specific measurements from consumer-grade sensors. Typically, these approaches are based on linear regression models or neural networks. This study investigates how motion data contribute to V˙O2 estimation accuracy during unconstrained running and walking. The results suggest that a long short term memory (LSTM) neural network can predict oxygen consumption with an accuracy of 2.49 mL/min/kg (95% limits of agreement) based only on speed, speed change, cadence and vertical oscillation measurements from an inertial navigation system combined with a Global Positioning System (INS/GPS) device developed by our group, worn on the torso. Combining motion data and heart rate data can significantly improve the V˙O2 estimation resulting in approximately 1.7-1.9 times smaller prediction errors than using only motion or heart rate data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964573PMC
http://dx.doi.org/10.3390/s23042249DOI Listing

Publication Analysis

Top Keywords

heart rate
12
rate data
12
oxygen uptake
8
lstm neural
8
neural network
8
motion data
8
v˙o2 estimation
8
data
5
surrogate modelling
4
modelling oxygen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!