A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessment of Various Multimodal Fusion Approaches Using Synthetic Aperture Radar (SAR) and Electro-Optical (EO) Imagery for Vehicle Classification via Neural Networks. | LitMetric

Assessment of Various Multimodal Fusion Approaches Using Synthetic Aperture Radar (SAR) and Electro-Optical (EO) Imagery for Vehicle Classification via Neural Networks.

Sensors (Basel)

Multi-Sensing Knowledge Branch, AFRL/RYAP, U.S. Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433, USA.

Published: February 2023

Multimodal fusion approaches that combine data from dissimilar sensors can better exploit human-like reasoning and strategies for situational awareness. The performance of a six-layer convolutional neural network (CNN) and an 18-layer ResNet architecture are compared for a variety of fusion methods using synthetic aperture radar (SAR) and electro-optical (EO) imagery to classify military targets. The dataset used is the Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset, using both original measured SAR data and synthetic EO data. We compare the classification performance of both networks using the data modalities individually, feature level fusion, decision level fusion, and using a novel fusion method based on the three RGB-input channels of a residual neural network (ResNet). In the proposed input channel fusion method, the SAR and the EO imagery are separately fed to each of the three input channels, while the third channel is fed a zero vector. It is found that the input channel fusion method using ResNet was able to consistently perform to a higher classification accuracy in every equivalent scenario.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963728PMC
http://dx.doi.org/10.3390/s23042207DOI Listing

Publication Analysis

Top Keywords

fusion method
12
fusion
8
multimodal fusion
8
fusion approaches
8
synthetic aperture
8
aperture radar
8
radar sar
8
sar electro-optical
8
electro-optical imagery
8
neural network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!