A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sparse Component Analysis (SCA) Based on Adaptive Time-Frequency Thresholding for Underdetermined Blind Source Separation (UBSS). | LitMetric

Sparse Component Analysis (SCA) Based on Adaptive Time-Frequency Thresholding for Underdetermined Blind Source Separation (UBSS).

Sensors (Basel)

School of Electrical & Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia.

Published: February 2023

Blind source separation (BSS) recovers source signals from observations without knowing the mixing process or source signals. Underdetermined blind source separation (UBSS) occurs when there are fewer mixes than source signals. Sparse component analysis (SCA) is a general UBSS solution that benefits from sparse source signals which consists of (1) mixing matrix estimation and (2) source recovery estimation. The first stage of SCA is crucial, as it will have an impact on the recovery of the source. Single-source points (SSPs) were detected and clustered during the process of mixing matrix estimation. Adaptive time-frequency thresholding (ATFT) was introduced to increase the accuracy of the mixing matrix estimations. ATFT only used significant TF coefficients to detect the SSPs. After identifying the SSPs, hierarchical clustering approximates the mixing matrix. The second stage of SCA estimated the source recovery using least squares methods. The mixing matrix and source recovery estimations were evaluated using the error rate and mean squared error (MSE) metrics. The experimental results on four bioacoustics signals using ATFT demonstrated that the proposed technique outperformed the baseline method, Zhen's method, and three state-of-the-art methods over a wide range of signal-to-noise ratio (SNR) ranges while consuming less time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961070PMC
http://dx.doi.org/10.3390/s23042060DOI Listing

Publication Analysis

Top Keywords

mixing matrix
20
source signals
16
blind source
12
source separation
12
source recovery
12
source
11
sparse component
8
component analysis
8
analysis sca
8
adaptive time-frequency
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!