Performance Optimization of Wearable Printed Human Body Temperature Sensor Based on Silver Interdigitated Electrode and Carbon-Sensing Film.

Sensors (Basel)

Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 5825, Qatar.

Published: February 2023

The human body's temperature is one of the most important vital markers due to its ability to detect various diseases early. Accurate measurement of this parameter has received considerable interest in the healthcare sector. We present a novel study on the optimization of a temperature sensor based on silver interdigitated electrodes (IDEs) and carbon-sensing film. The sensor was developed on a flexible Kapton thin film first by inkjet printing the silver IDEs, followed by screen printing a sensing film made of carbon black. The IDE finger spacing and width of the carbon film were both optimized, which considerably improved the sensor's sensitivity throughout a wide temperature range that fully covers the temperature of human skin. The optimized sensor demonstrated an acceptable temperature coefficient of resistance (TCR) of 3.93 × 10 °C for temperature sensing between 25 °C and 50 °C. The proposed sensor was tested on the human body to measure the temperature of various body parts, such as the forehead, neck, and palm. The sensor showed a consistent and reproducible temperature reading with a quick response and recovery time, exhibiting adequate capability to sense skin temperatures. This wearable sensor has the potential to be employed in a variety of applications, such as soft robotics, epidermal electronics, and soft human-machine interfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964601PMC
http://dx.doi.org/10.3390/s23041869DOI Listing

Publication Analysis

Top Keywords

temperature
9
human body
8
temperature sensor
8
sensor based
8
based silver
8
silver interdigitated
8
carbon-sensing film
8
sensor
7
film
5
performance optimization
4

Similar Publications

Probing Critical States of Matter on a Digital Quantum Computer.

Phys Rev Lett

December 2024

Quantinuum, 303 S. Technology Court, Broomfield, Colorado 80021, USA.

Although quantum mechanics underpins the microscopic behavior of all materials, its effects are often obscured at the macroscopic level by thermal fluctuations. A notable exception is a zero-temperature phase transition, where scaling laws emerge entirely due to quantum correlations over a diverging length scale. The accurate description of such transitions is challenging for classical simulation methods of quantum systems, and is a natural application space for quantum simulation.

View Article and Find Full Text PDF

The bismuth monolayer has recently been experimentally identified as a novel platform for the investigation of two-dimensional single-element ferroelectric system. Here, we model the potential energy surface of a bismuth monolayer by employing a message-passing neural network and achieve an error smaller than 1.2 meV per atom.

View Article and Find Full Text PDF

Temperature-Dependent Magnetic Resonance Relaxation Behaviors in Porous Materials.

Phys Rev Lett

December 2024

University of New Brunswick, UNB MRI Centre, Department of Physics, Fredericton, New Brunswick, E3B 5A3, Canada.

We observe divergent temperature-dependent magnetic resonance relaxation behaviors across various brine-saturated porous materials. The paramagnetic and diamagnetic nature of the samples underlies these divergent behaviors. The temperature-dependent trends of the longitudinal T_{1} and transverse T_{2} relaxation times are systematically explained via distinct relaxation-diffusion regimes of Brownstein-Tarr theory.

View Article and Find Full Text PDF

Cooling of Semiconductor Devices via Quantum Tunneling.

Phys Rev Lett

December 2024

Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts 02139, USA.

Classical transport of electrons and holes in nanoscale devices leads to heating that severely limits performance, reliability, and efficiency. In contrast, recent theory suggests that interband quantum tunneling and subsequent thermalization of carriers with the lattice results in local cooling of devices. However, internal cooling in nanoscale devices is largely unexplored.

View Article and Find Full Text PDF

Phase Switch Driven by the Hidden Half-Ice, Half-Fire State in a Ferrimagnet.

Phys Rev Lett

December 2024

Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA.

The notion of "half fire, half ice" was recently introduced to describe an exotic macroscopic ground-state degeneracy emerging in a ferrimagnet under the critical magnetic field, in which the "hot" spins are fully disordered on the sublattice with smaller magnetic moments and the "cold" spins are fully ordered on the sublattice with larger magnetic moments. Here, we further point out that this state has a twin named "half ice, half fire" in which the hot and cold spins switch positions. The new state is an excited state-thus hidden in the ground-state phase diagram-and is robust with respect to the interactions that destroy the half-fire, half-ice state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!