A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Eye Recognition by YOLO for Inner Canthus Temperature Detection in the Elderly Using a Transfer Learning Approach. | LitMetric

Early detection of physical frailty and infectious diseases in seniors is important to avoid any fatal drawback and promptly provide them with the necessary healthcare. One of the major symptoms of viral infections is elevated body temperature. In this work, preparation and implementation of multi-age thermal faces dataset is done to train different "You Only Look Once" (YOLO) object detection models (YOLOv5,6 and 7) for eye detection. Eye detection allows scanning for the most accurate temperature in the face, which is the inner canthus temperature. An approach using an elderly thermal dataset is performed in order to produce an eye detection model specifically for elderly people. An application of transfer learning is applied from a multi-age YOLOv7 model to an elderly YOLOv7 model. The comparison of speed, accuracy, and size between the trained models shows that the YOLOv7 model performed the best (Mean average precision at Intersection over Union of 0.5 (mAP@.5) = 0.996 and Frames per Seconds (FPS) = 150). The bounding box of eyes is scanned for the highest temperature, resulting in a normalized error distance of 0.03. This work presents a fast and reliable temperature detection model generated using non-contact infrared camera and a deep learning approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964838PMC
http://dx.doi.org/10.3390/s23041851DOI Listing

Publication Analysis

Top Keywords

eye detection
12
yolov7 model
12
inner canthus
8
canthus temperature
8
temperature detection
8
transfer learning
8
learning approach
8
detection model
8
model elderly
8
detection
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!