With the proliferation of IoT applications, more and more smart, connected devices will be required to communicate with one another, operating in situations that involve diverse levels of range and cost requirements, user interactions, mobility, and energy constraints. Wireless technologies that can satisfy the aforementioned requirements will be vital to realise emerging market opportunities in the IoT sector. Bluetooth Mesh is a new wireless protocol that extends the core Bluetooth low energy (BLE) stack and promises to support reliable and scalable IoT systems where thousands of devices such as sensors, smartphones, wearables, robots, and everyday appliances operate together. In this article, we present a comprehensive discussion on current research directions and existing use cases for Bluetooth Mesh, with recommendations for best practices so that researchers and practitioners can better understand how they can use Bluetooth Mesh in IoT scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965677 | PMC |
http://dx.doi.org/10.3390/s23041826 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China.
Flexible transparent conductive films (FTCFs) with electromagnetic interference (EMI) shielding performance are increasingly crucial as visualization windows in optoelectronic devices due to their capabilities to block electromagnetic radiation (EMR) generated during operation. Metal mesh-based FTCFs have emerged as a promising representative in which EMI shielding effectiveness (SE) can be enhanced by increasing the line width, reducing the line spacing, or increasing mesh thickness. However, these conventional approaches decrease optical transmittance or increase material consumption, thus compromising the optical performance and economic viability.
View Article and Find Full Text PDFSensors (Basel)
September 2024
Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
Bluetooth Low Energy (BLE) mesh networks provide flexible and reliable communication among low-power sensor-enabled Internet of Things (IoT) devices, enabling them to communicate in a flexible and robust manner. Nonetheless, the majority of existing BLE-based mesh protocols operate as flooding-based piconet or scatternet overlays on top of existing Bluetooth star topologies. In contrast, the Ad hoc On-Demand Distance Vector (AODV) protocol used primarily in wireless ad hoc networks (WAHNs) is forwarding-based and therefore more efficient, with lower overheads.
View Article and Find Full Text PDFSensors (Basel)
July 2024
School of Software, Northwestern Polytechnical University, Xi'an 710072, China.
Bluetooth Low Energy Mesh (BLE Mesh) enables Bluetooth flexibility and coverage by introducing Low-Power Nodes (LPNs) and enhanced networking protocol. It is also a commonly used communication method in sensor networks. In BLE Mesh, LPNs are periodically woken to exchange messages in a stop-and-wait way, where the tradeoff between energy and efficiency is a hard problem.
View Article and Find Full Text PDFSensors (Basel)
March 2023
Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
Wireless acoustic sensor networks (WASNs) and intelligent microsystems are crucial components of the Internet of Things (IoT) ecosystem. In various IoT applications, small, lightweight, and low-power microsystems are essential to enable autonomous edge computing and networked cooperative work. This study presents an innovative intelligent microsystem with wireless networking capabilities, sound sensing, and sound event recognition.
View Article and Find Full Text PDFSensors (Basel)
February 2023
Nanotechnology Facility, Swinburne University of Technology, John St., Hawthorn, VIC 3122, Australia.
With the proliferation of IoT applications, more and more smart, connected devices will be required to communicate with one another, operating in situations that involve diverse levels of range and cost requirements, user interactions, mobility, and energy constraints. Wireless technologies that can satisfy the aforementioned requirements will be vital to realise emerging market opportunities in the IoT sector. Bluetooth Mesh is a new wireless protocol that extends the core Bluetooth low energy (BLE) stack and promises to support reliable and scalable IoT systems where thousands of devices such as sensors, smartphones, wearables, robots, and everyday appliances operate together.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!