AI Article Synopsis

  • Observing the curing reaction of epoxy resins is crucial for ensuring quality in fibre composite production, with electrical impedance spectra being a key monitoring method.
  • Impedance spectra reveal physical changes during curing: early stages are dominated by ionic conductivity and electrode polarization, while dipole relaxation takes over later; evaluating across an entire frequency spectrum is more effective than focusing on a single frequency.
  • A proposed frequency-dependent model simplifies the interpretation of complex raw spectral data, achieving a relative error of only 2.3% with five parameters, while indicating the need for changing key indicators as the curing process progresses.

Article Abstract

Observing the curing reaction of epoxy resins is a key to quality assurance in fibre composite production. The evaluation of electrical impedance spectra is an established monitoring method. Such impedance spectra contain the physical effects of dipole relaxation, ionic conduction and electrode polarisation, which shift to lower frequencies as curing progresses. In the early stage of the curing reaction, ionic conductivity and electrode polarisation dominate, and in the later stage of the curing reaction, dipole relaxation dominates. Due to the shift of the effects over several frequency decades, it makes sense to evaluate electrical impedance spectra not exclusively at one frequency but over an entire available frequency spectrum. The measured spectral raw data cannot be easily interpreted by a control algorithm and have to be mapped to simpler key indicators. For this purpose, a frequency-dependent model is proposed to address the aforementioned physical effects. With only five free parameters, measured spectra can be described with a relative error of only 2.3%. The shift of the occurring effects to lower frequencies necessitates switching the key indicator used in the progression of the cure reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958844PMC
http://dx.doi.org/10.3390/s23041825DOI Listing

Publication Analysis

Top Keywords

impedance spectra
16
curing reaction
12
epoxy resins
8
electrical impedance
8
physical effects
8
dipole relaxation
8
electrode polarisation
8
lower frequencies
8
stage curing
8
spectra
5

Similar Publications

Structural, dielectric and magnetic properties of Sb/Cr-doped CaCu3Ti4O12 quadruple perovskite oxides.

J Phys Condens Matter

January 2025

Nanjing University, Hankou Road 22, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, CHINA.

Driven by the miniaturization of microelectronic devices and their multifunctionalities, the development of new quadruple-perovskite oxides with high dielectric constants and high Curie temperature are highly required. Herein, we report on the structural, dielectric and magnetic properties of Sb/Cr-doped CaCu3Ti4O12 (CCTO) quadruple perovskite oxides, CaCu3Ti3.9Sb0.

View Article and Find Full Text PDF

Interplay of chain dynamics and ion transport on mechanical behavior and conductivity in ionogels.

Soft Matter

December 2024

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Understanding the interplay among the mechanical behavior, ionic conductivity and chain dynamics of ionogels is essential for designing flexible conductors that exhibit both high conductivity and excellent mechanical properties. In this study, ionogels were synthesized the radical polymerization of ,'-dimethylacrylamide (DMAA) and methacrylic acid (MAAc) monomers in the presence of ionic liquid 1-ethyl-3-methylimidazolium trifluoromethane sulfonate ([EMIM][OTf]). By varying the mass content of ionic liquid within ionogels, we investigated the mechanical behavior and ionic conductivity at the macroscopic scale using tensile, rheological testing and electrochemical impedance spectroscopy, as well as the dynamic behavior of chain segments and ions within the network at the microscopic scale using broadband dielectric relaxation spectroscopy (BDS) over a broad temperature range.

View Article and Find Full Text PDF

This study presents the design and experimental evaluation of advanced corrosion protection coatings for application on prestressing strands which are the core constituents of prestressed concrete structures such as bridges. Variety of self-heal coatings embodying corrective and protective phenomena in response to the degrading effects of corrosion have been designed and tested in simulated aggressive weathering conditions. Standard 7-wire prestressing strands coated with self-heal epoxy, self-heal toughened epoxy and hybrid epoxy coating systems were subjected to salt fog spray up to a duration of 2500 h, and 3M CalCl, 3M NaOH, saturated Ca(OH) solutions and distilled water up to 45 days duration.

View Article and Find Full Text PDF

In this work, we exploit the electronic features of tetrathiafulvalene (TTF) as a backbone in synthesizing chiral derivatives. The aim is to make use of TTF's well-known and unique redox and semiconducting properties in the fields of enantio-selective recognition and chiral charge transfer (CT) complex preparation, with the ultimate objective of obtaining devices with various potential applications, ranging from plasmonics to quantum computing. In particular, both cyclohexane-bis (TTF-amide)-based enantiomers 1-(S,S) and 1-(R,R), stable under an oxidation regime, have been selected, and under these conditions, the electrochemical enantiospecific response of the four possible systems, coming from the combination with L- and D-tartaric acid, respectively, was tested.

View Article and Find Full Text PDF

Iron-doped tungsten disulfide (Fe-WS) nanoparticles were synthesized a green method using neem leaf extract. X-ray diffraction (XRD) confirmed structural changes, with the formation of a hexagonal structure. The -spacing is increased by Fe doping (6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!